Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)
\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2003}>50\)
\(\sqrt{29}+\sqrt{3}+\sqrt{2013}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)
\(\sqrt{29}+\sqrt{3}+\sqrt{2015}>\sqrt{25}+\sqrt{1}+\sqrt{1936}\)\(=5+1+44=50\)
\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2015}>50\)
-Ta có: √29 > √25 =5
√3 > 1
√2003 >√1936 =44
-Cộng từng vế của ba bất đẳng thức ta được
√29 + √3 + √2003 > 1+5 +44 = 50
-Vậy √29 + √3 + √2003 = 50
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)
\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)
\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)
\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)
So sánh gì thế em, em nhập đủ đề vào hi
\(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)
Có: \(\sqrt{16}>\sqrt{14}\)
\(\sqrt{33}>\sqrt{29}\)
=> \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
=> \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
Ta có: \(1=\sqrt{1}< \sqrt{50}\Rightarrow1-\sqrt{50}< 0\)
\(\Rightarrow\sqrt{\left(1-\sqrt{50}\right)^2}=\sqrt{50}-1>\sqrt{49}-1=7-1=6\)
Vậy \(\sqrt{\left(1-\sqrt{50}\right)^2}>6\)
\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50
\(\sqrt{29}>\sqrt{25}=5\)
\(\sqrt{3}>\sqrt{1}=1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
\(=>\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44=50\)