Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.
a) có \(\sqrt{2}\) <\(\sqrt{3}\)
5= \(\sqrt{25}\) >\(\sqrt{11}\)
=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
b)có \(\sqrt{21}>\sqrt{20}\)
-\(\sqrt{5}\) >-\(\sqrt{6}\)
=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
A= ( \(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\) ) + (\(\sqrt{20}\) + \(\sqrt{40}\) + \(\sqrt{60}\))
= (1+1,4+1,7)+(4,4+6,3+7,7)
= 4,1+18,4
=22,5
a)\(\sqrt{4}+\sqrt{14}=5,741657387\)
\(\sqrt{18}\)=4,242640687
->vay: dien dau >
b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{18}=16,23872966\)
\(\sqrt{90}=9,486832981\)
->vay : điền dấu <
a)\(\sqrt{4}+\sqrt{14}\) và \(\sqrt{18}\)
ta có : \(\sqrt{18}=\sqrt{14}+\sqrt{4}\)
suy ra : \(\sqrt{4}+\sqrt{14}=\sqrt{18}\)
b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{12}\)với \(\sqrt{90}\)
ta có :\(\sqrt{90}=\sqrt{20}+\sqrt{20}+\sqrt{20}+\sqrt{30}\)
mà :\(\sqrt{20}>\sqrt{15};\sqrt{20}>\sqrt{16};\sqrt{20}>\sqrt{17};\sqrt{30}>\sqrt{12}\)
suy ra :\(\sqrt{90}\)lớn hơn
a) ta thay 1-2002/2003= 1/2003 va 1-2003/2004=1/2004
ma 1/2003>1/2004 =>2002/2003<2003/2004
b) ta co -2002/2003<1<2005/2004
a) \(\sqrt{27}+\sqrt{12}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(\Rightarrow\sqrt{27}+\sqrt{12}>8\)
b) \(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=7+1=8\)
=> \(\sqrt{50+2}< 8< \sqrt{50}+\sqrt{2}\)
\(\Rightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)