Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=1+2+...+2^{2008}+2^{2009}\)
\(\Rightarrow2A=2+2^2+..+2^{2010}\)
\(\Rightarrow A=2^{2010}-1\)
\(\Rightarrow S=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow S=1\)
S = 22010 - 22009 - 22008 - ... - 2 - 1
S= 22010 - ( 22009 + 22008 + ... + 2 + 1 )
Đặt A = 22009 + 22008 + .... + 2 + 1
2A = 2 . ( 22009 + 22008 + .... + 2 + 1
2A = 22010 + 22009 + .... + 22 + 2
2A - A = 22010 + 22009 + ...... + 22 + 2 - 22009 - 22008 - .... - 2 - 1
A = 22010 - 1
Thay A vào S ta có :
S = 22010 - ( 22010 - 1 )
S = 22010 - 22010 + 1
S = 0 + 1
S = 1
Vậy S = 1
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
\(\Rightarrow S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=1+2+2^2+...+2^{2008}+2^{2009}\)
Nhân cả hai vế của A với 2 ta được :
\(2A=2\left(1+2+2^2+...+2^{2009}\right)\)
\(=2+2^2+2^3+...+2^{2010}\) (1)
Trừ cả hai vế của (1) cho A ta được :
\(2A-A=\left(2+2^2+2^3+...+2^{2010}\right)-\left(1+2+2^2+...+2^{2009}\right)\)
\(A=2^{2010}-1\)
\(\Rightarrow S=2^{2010}-\left(2^{2010}-1\right)=1\)
Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)
\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)
Thay \(H=1\) vào biểu thức \(2010^H\)
\(\Rightarrow2010^H=2010^1=1\)
Vậy \(2010^H=1\)
\(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(\Rightarrow2S=2.\left(2^{2010}-2^{2009}-2^{2008}-...-2-1\right)\)
\(\Rightarrow2S=2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)
Có \(2S-S=\left(2^{2011}-2^{2010}-2^{2009}-...-2^2-2\right)-\left(2^{2010}-2^{2009}-2^{2008}-...-2-1\right)\)
\(S=2^{2011}-2^{2010}-2^{2009}-...-2^2-2-2^{2010}+2^{2009}+2^{2008}+...+2+1\)
\(S=2^{2011}+1\)
Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)
\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)
Thay \(H=1\) vào biểu thức \(2010^H\)
\(\Rightarrow2010^H=2010^1=1\)
Vậy \(2010^H=1\)
S=22010-22009-22008-...-2-1
=>2S=22011-22010-22009-...-22-2
=>2S-S=22011-22010-22009-...-22-2-22010+22009+22008+...+2+1
=>S=22011-22010-22010+1
=>S=22011-2*22010+1
=>S=22011-22011+1
=>S=1