Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
\(\Rightarrow3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}+\frac{1}{3^8}\)
\(\Rightarrow3S-S=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\right)\)
\(\Rightarrow2S=1-\frac{1}{3^9}\)
\(\Rightarrow S=\frac{1-\frac{1}{3^9}}{2}\)
S= 1/3 + 1/32 + 1/33 +........+ 1/ 38 + 1/39
=> S x 3 = 1 + 1/3 + 1/32 + 1/33 +........+ 1/ 38
=> S x 3 - S = (1 + 1/3 + 1/32 + 1/33 +........+ 1/ 38 ) - (1/3 + 1/32 + 1/33 +........+ 1/ 38 + 1/39)
<=> S x 2 = 1 - 1/39 = (39 -1) / 39
=> S = \(\frac{3^9-1}{2.3^9}\)
\(S=3+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)
\(\Rightarrow2S=6+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(\Rightarrow2S-S=3+\frac{3}{2}-\frac{3}{2^9}\)
\(S=\frac{9}{2}-\frac{3}{2^9}\)
3S= 3-33 + 33 +...+3100 - 3101
+
S= ....
--------------------------------
4S=1-3101
=> S=(1-3101 )/4
#Học-tốt
3S = 3 - 32 + 33- 34 + ...+ 3100 - 3101
3S+S=\(1-3^{101}\)
\(\Rightarrow S=\frac{1-3^{101}}{4}\)
\(S=1-3+3^2-3^3+...+3^{99}-3^{100}\)
\(3S=3-3^2+3^3-3^4+...+3^{100}-3^{101}\)
\(3S+S=\left(1-3+3^2-3^3+...+3^{99}-3^{100}\right)+\left(3-3^2+3^3-3^4+...+3^{100}-3^{101}\right)\)
\(4S=1-3^{101}\)
\(S=\frac{1-3^{101}}{4}\)
A = 2o + 21 + 22 + ... + 22010
=> 2A = 21 + 22 + 23 + ... + 22010 + 22011
Mà A = 20 + 21 + 22 + ... + 22010
=> 2A - A = A = 1 + 22011
B = 1 + 3 + 32 + ... + 3100
=> 3B = 3 + 32 + 33 + ... + 3100 + 3101
Mà B = 1 + 3 + 32 + ... + 3100
=> 3B - B = 2B = 2 + 3101
=> B = ( 2 + 3101 ) : 2
\(\frac{45^3\cdot20^4\cdot18^2}{180^5}\)
\(=\frac{45^3\cdot4^4\cdot5^5\cdot18^2}{45^5\cdot4^5}\)
\(=\frac{5^5\cdot18^2}{45^2\cdot4}\)
\(=\frac{5^5\cdot2^2\cdot9^2}{5^2\cdot9^2\cdot2^2}\)
\(=\frac{5^5}{5^2}\)
\(=5^3=125\)
S= 1+ 3 + 32 +... + 318 + 319
3S= 3+32+33+... + 319+ 320
3S-S= ( 3+32+33+... + 319+ 320)-(1+ 3 + 32 +... + 318 + 319)
2S= 320-1
S= 320-1/2
Có : 3S = 3+3^2+....+3^20
2S = 3S - S = (3+3^2+....+3^20)-(1+3+3^2+....+3^19) = 3^20-1
=> S = (3^20-1)/2 = 1743392200
Tk mk nha