Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : dễ bạn tự làm được :)
Bài 2 :
Ta có :
\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có : B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì : 2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~
Đặt B = 2 + 22 + 23 + 24 + 25 + 26 + ... + 22016 + 22017
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (22015 + 22016 + 22017)
= (2 + 22 + 23) + 23.(2 + 22 + 23) + .... + 22014.(2 + 22 + 23)
= 14 + 23.14 + ... + 22014.14
= 14.(1 + 23 + .... + 22014)
= 7.2.(1 + 23 + .... + 22014)\(⋮\)7
=> \(B⋮7\)
<=> (B + 1) : 7 dư 1
<=> A : 7 dư 1 (vì A = 1 + B)
Vậy số dư cần tìm khi A : 7 là 1
Ta có :B = 1 + 3 + 32 + 33 + 34 + 35 + ... + 397 + 398 + 399
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (397 + 398 + 399)
= (1 + 3 + 32) + 33 . (1 + 3 + 32) +...+ 397.(1 + 3 + 32)
= 13 + 33 . 13 + ... + 397.13
= 13.(1 + 33+ ... + 397) \(⋮\)13
Vậy B\(⋮\)13 (đpcm)
Ta có : B = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37+ ... + 396 + 397 + 398 + 399
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)
= 40 + 34 .40 + ... + 396. 40
= 40.(1 + 34 + .. + 396) \(⋮\)40
Vậy B \(⋮\) 40 (đpcm)
a) B=1+3+32+33+...+399
B=(1+3+32)+(33+34+35)+...+(397+398+399)
B=(1+3+32)+33(1+3+32)+...397(1+3+32)
B=13+33.13+...+397.13
B=(1+33+...+97).13
=> b chia hết cho 13
b)B=(1+3+32+33)+...+(396+397+398+399)
B=(1+3+32+33)+34(1+3+32+33)+...+396(1+3+32+33)
B=40+34.40+...+396.40
B=(1+34+...+396).40
=> B hết cho 40
Ok rồi nha:v
\(A=1+2+2^2+...+2^{2017}\)
\(A=1+\left(2+2^2+2^3\right)+...+\left(2^{2015}+2^{2016}+2^{2017}\right)\)
\(A=1+2\left(1+2+2^2\right)+...+2^{2015}\left(1+2+2^2\right)\)
\(A=1+2\cdot7+...+2^{2015}\cdot7\)
\(A=1+7\cdot\left(2+...+2^{2015}\right)\)
=> A chia 7 dư 1
Ta có
2A = 2 + 22 + ... + 22017
2A - A = 22017 - 1
A = what the help !!!!!!!
XIN LỖI
2A = 2 + 22+ ... + 22018
2A - A = 22018 - 1
A = chà
A = 1 + 2 + 2^2 + 2^3 + ... + 2^2017
=> A = (1 + 2) + (2^2 + 2^3 + 2^4) + ... + (2^2015 + 2^2016 + 2^2017)
=> A = 3 + 2^2.(1 + 2 + 2^2) + ... + 2^2015.(1 + 2 + 2^2)
=> A = 3 + 2^2.7 + ... + 2^2015.7
=> A = 3 + 7.(2^2 + ... + 2^2015)
Mà 7.(2^2 + ... + 2^2015) chia hết cho 7 => A = 3 + 7.(2^2 + ... + 2^2015) chia 7 dư 3.
Ta có :A= (1+2)+(22+23+24)+..........+(22015+22016+22017)
A= 3.22.(1+2+22)+.......+22015.(1+2+22)
A=3.22.7+........+22015.7
A=3+7.(22+.....+22015)
A= 7.(22+....+22015) +3
Vậy A chia có dư r=3
A = 1 + 2 + 22 +......+ 22016 + 22017
= (1 + 2) + (22 + 23 + 24) + (25 + 26 + 27) + ...... + (22015 + 22016 + 22017)
= 3 + 22(1 + 2 + 22) + 25(1 + 2 + 22) + .... + 22015(1 + 2 + 22)
= 3 + 7(22 + 25 +....+ 22015)
Ta thấy 7(22 + 25 +....+ 22015) \(⋮7\)
Vậy A chia 7 dư 3