Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{2017}+2^{2014}=2^{2014}\left(2^3+1\right)=2^{2014}.9⋮9\)
b) \(4^{2016}+4^{2014}=4^{2014}\left(4^2+1\right)=4^{2014}.17\)
2) \(3.4^{n+2}+4^n=49\\ \Rightarrow4^n\left(3.4^2+1\right)=49\\ \Rightarrow4^n.33=49\\ \Rightarrow4^n=16\\ \Rightarrow n=2\)
3) \(200-180:\left[36.5-7.25\right]\\ =200-180:\left[180-175\right]\\ =200-180:5\\ =200-36\\ =164\)
Ta có :A= (1+2)+(22+23+24)+..........+(22015+22016+22017)
A= 3.22.(1+2+22)+.......+22015.(1+2+22)
A=3.22.7+........+22015.7
A=3+7.(22+.....+22015)
A= 7.(22+....+22015) +3
Vậy A chia có dư r=3
A = 1 + 2 + 22 +......+ 22016 + 22017
= (1 + 2) + (22 + 23 + 24) + (25 + 26 + 27) + ...... + (22015 + 22016 + 22017)
= 3 + 22(1 + 2 + 22) + 25(1 + 2 + 22) + .... + 22015(1 + 2 + 22)
= 3 + 7(22 + 25 +....+ 22015)
Ta thấy 7(22 + 25 +....+ 22015) \(⋮7\)
Vậy A chia 7 dư 3
S dau tien ne ta có (2016-1):2=1007,5 => ghép được 1007 cap va thua ra 1 so
ta có :(1-2)+(3-4)+........+(2015-2016)+2014
=-1+-1+-1+......+-1+2014
=-1007+2014=1007
B=1+3+3^2+3^3+...+3^100
3B=3+3^2+3^3+3^4+...+3^101
3B-B=3+3^2+3^3+3^4+...+3^101-1-3-3^2-3^3-...-3^100
2B=3^101-1
B=(3^101-1):2
1) \(2^{x+1}\cdot2^{2014}=2^{2015}\)\(\Leftrightarrow2^{2014x+2014}=2^{2015}\)\(\Leftrightarrow2014x+2014=2015\)\(\Leftrightarrow x=\frac{1}{2014}\)
2) \(7x-2x=\frac{6^{17}}{6^{15}}+\frac{44}{11}\)\(\Leftrightarrow5x=6^2+4=36+4=40\)\(\Leftrightarrow x=\frac{40}{5}=8\)
3) \(3^x=9\)\(\Leftrightarrow3^x=3^2\)\(\Leftrightarrow x=2\)
4) \(7x-x=\frac{5^{21}}{5^{19}}+3\cdot2^2-7^0\)\(\Leftrightarrow6x=5^2+3\cdot4-1=25+12-1=36\)\(\Leftrightarrow x=6\)
5) \(4^x=64\)\(\Leftrightarrow4^x=4^3\)\(\Leftrightarrow x=3\)
6) \(9^{x-1}=9\)\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=0\)
7) \(\frac{2^x}{2^5}=1\)\(\Leftrightarrow2^{x-5}=2^0\)\(\Leftrightarrow x-5=0\)\(\Leftrightarrow x=5\)
8) \(\left(5x-9\right)^3=216\)\(\Leftrightarrow\left(5x-9\right)^3=6^3\)\(\Leftrightarrow5x-9=6\)\(\Leftrightarrow5x=15\)\(\Leftrightarrow x=3\)
9) \(5\cdot3^{7x-11}=135\)\(\Leftrightarrow5.3^{7x-11}=5.3^3\)\(\Leftrightarrow3^{7x-11}=3^3\)\(\Leftrightarrow7x-11=3\)\(\Leftrightarrow7x=14\Leftrightarrow x=2\)
10) \(2.3^x=19\cdot3^8-81^2\)\(\Leftrightarrow2.3^x=19\cdot3^8-3^8=18.3^8=2.3^{11}\)\(\Leftrightarrow3^x=3^{11}\Leftrightarrow x=11\)
Đây là cách làm của mình. Bạn có thể chỉnh sửa tuỳ ý theo cách làm của bạn nhé ^^
Học tốt ^3^
a) 1 - 2 + 3 - 4 + 5 - 6 + .....+ 25 - 26
= (1 - 2) + (3 - 4) + (5 - 6) + .....+ (25 - 26)
= -1 + (-1) + ( -1 ) +...+ ( -1 ) {có 13 số )
= -13
b) tương tự nhé bn
Bài 1:
a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016
7A = 7 + 72 + 73 + 74 + ... + 72017
7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)
6A = 72017 - 1
\(A=\frac{7^{2017}-1}{6}\)
b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017
4B = 4 + 42 + 43 + 44 + ... + 42018
4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)
3B = 42018 - 1
\(B=\frac{4^{2018}-1}{3}\)
Bài 2:
a) Ta có: \(14\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)
b) Ta có: \(2015\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)
Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha