Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)
Để A đạt GTLN thì x2+3x+3 bé nhất
mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)
Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)
lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)
Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)
\(A=\frac{3\left(2x^2+6x+10\right)}{3\left(x^2+3x+3\right)}=\frac{6x^2+18x+30}{3\left(x^2+3x+3\right)}=\frac{22\left(x^2+3x+3\right)-16x^2-48x-36}{3\left(x^2+3x+3\right)}\)
\(A=\frac{22}{3}-\frac{16x^2+48x+36}{3\left(x^2+3x+3\right)}=\frac{22}{3}-\frac{\left(4x+6\right)^2}{3\left(x^2+3x+3\right)}\)
Do \(\left\{{}\begin{matrix}\left(4x+6\right)^2\ge0\\x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\frac{\left(4x+6\right)^2}{3\left(x^2+3x+3\right)}\ge0\)
\(\Rightarrow A\le\frac{22}{3}\Rightarrow A_{max}=\frac{22}{3}\) khi \(4x+6=0\Rightarrow x=-\frac{3}{2}\)
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
ta có : M=\(\frac{1}{x^2+x+1}=\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)
MÀ \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\)
Dấu '=' xảy ra khi : \(x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTLN của M là 4/3 khi x=-1/2
\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)
D đạt giá trị lớn nhất
<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất
<=> x2 + 1 đạt giá trị nhỏ nhất
x2 lớn hơn hoặc bằng 0
x2 + 1 lớn hơn hoặc bằng 1
\(\frac{1}{x^2+1}\le1\)
\(1+\frac{1}{x^2+1}\le2\)
Vậy Max D = 2 khi x = 0
\(A=x^2-3x+2\)
\(\Leftrightarrow A=x^2-3x+\dfrac{9}{4}-\dfrac{1}{4}\)
\(\Leftrightarrow A=\left[x^2-2.x\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]-\dfrac{1}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)
Vậy GTNN của \(A=\dfrac{-1}{4}\) khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)
\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)
\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)
\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)
\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)