Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = x2 - x + 2
=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
A = x2 - x + 2 = x2 - 2.x.1 + 12 + 1 = ( x+1)2 + 1
Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)
=> ( x+1)2 + 1 \(\ge\)1 khi với mọi x)
Dấu "=" xảy ra khi ( x+1)2 = 0
=> x + 1 = 0 -> x= -1
Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1
a)
$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$
$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$
$\geq \frac{10091}{5}$
Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$
$\Leftrightarrow x=1; y=\frac{2}{5}$
b)
\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)
\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)
\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$
$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$
c)
$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$
$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$
Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$
Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$
$\Leftrightarrow x=1; y=\frac{-1}{3}$
d)
$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$
$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$
$\leq -\frac{40071}{20}$
Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$
\(C=x^2+y^2-3x+4y+5\)
\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)
A=3x - 3x2 -1
⇔x + 2x -2x2 - x2 - 2 + 1
⇔(x - 2x2 +1) +(2x-2)
⇔(x-1)2 +2(x-1)
⇔(x-1)(x-1+2)
⇔(x-1)(x+1)
⇔ x2 -1 ≥-1
dấu "=" xảy ra khi
x2 =0 ⇔ x =0
vậy MinA= -1 khi x =0
\(3x-3x^2-1=-3\left(x^2-x+\dfrac{1}{3}\right)=-3\left(x^2-2x\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{3}\right)=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)Ta có
\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow-3\left(x-\dfrac{1}{2}\right)\le0\Rightarrow-3\left(x-\dfrac{1}{2}\right)-\dfrac{1}{4}\le-\dfrac{1}{4}\)
Vậy Amin=\(-\dfrac{1}{4}\) đạt được khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Nếu sai thì thui nhé tại mình mới hk
\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)
\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)
Dấu ''='' xảy ra khi x = 3/4
Vậy GTNN của A bằng 7/8 tại x = 3/4
a. A=x2-6x+13
=x2-2.x.3+32+4
=(x-3)2+4 > 4
=> A có GTNN là 4
<=> x-3=0
<=> x=3
b. B=4x-x2
=-x2+4x-4+4
=-(x2-4x+4)+4
=-(x-2)2+4 < 4
=> GTLN của B là 4
<=> x-2=0
<=> x=2
\(A=x^2-3x+2\)
\(\Leftrightarrow A=x^2-3x+\dfrac{9}{4}-\dfrac{1}{4}\)
\(\Leftrightarrow A=\left[x^2-2.x\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]-\dfrac{1}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)
Vậy GTNN của \(A=\dfrac{-1}{4}\) khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)