Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : M=\(\frac{1}{x^2+x+1}=\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)
MÀ \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\)
Dấu '=' xảy ra khi : \(x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTLN của M là 4/3 khi x=-1/2
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)
Để A đạt GTLN thì x2+3x+3 bé nhất
mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)
Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)
lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)
Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)
Ta có:
+) \(y-\dfrac{1}{2} = \dfrac{x}{x^2+1}-\dfrac{1}{2}=\dfrac{2x-x^2-1}{x^2+1}=\dfrac{-(x-1)^2}{x^2+1}\leq 0 \Rightarrow y\le \dfrac{1}{2} \), dấu "=" xảy ra khi và chỉ khi x = 1
+)\(y+\dfrac{1}{2} = \dfrac{x}{x^2+1}+\dfrac{1}{2}=\dfrac{2x+x^2+1}{x^2+1}=\dfrac{(x+1)^2}{x^2+1}\geq 0 \Rightarrow y \ge -\dfrac{1}{2}\), dấu "=" xảy ra khi và chỉ khi x = -1
Vậy GTLN của y là 1/2; GTNN của y là -1/2
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)
D đạt giá trị lớn nhất
<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất
<=> x2 + 1 đạt giá trị nhỏ nhất
x2 lớn hơn hoặc bằng 0
x2 + 1 lớn hơn hoặc bằng 1
\(\frac{1}{x^2+1}\le1\)
\(1+\frac{1}{x^2+1}\le2\)
Vậy Max D = 2 khi x = 0
\(D=\frac{x^2+}{x^2+1}\)