K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

c/m biểu thức sau là dương:

a) \(x^2-8x+20\) = \(x^2-8x+16+4\)=\(\left(x-4\right)^2+4\ge4>0\)

Vậy biểu thức trên là dương.

b) \(4x^2-12x+11\)\(=4x^2-12x+9+2\)= \(\left(2x-3\right)^2+2\ge2>0\)

Vậy biểu thức trên dương.

c) \(x^2-x+1\)\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Vậy biểu thức trên dương.

d) \(x^2-2x+y^2+4y+6\)

= \(x^2-2x+1+y^2-4y+4+1=\left(x-1\right)^2+\left(y-2\right)^2+1\)

\(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\) mà 1>0

=> \(x^2-2x+y^2+4y+6>0\)

Vậy biểu thức trên dương.

5 tháng 7 2018

a)  \(x^2-8x+20=\left(x-4\right)^2+4>0\)

b)  \(4x^2-12x+11=\left(2x-3\right)^2+2>0\)

c)  \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

d)  \(x^2-2x+y^2+4y+6=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)

19 tháng 10 2020

a) \(x^2-8x+20\)

\(=x^2-2.x.4+16+4\)

\(=\left(x-4\right)^2+4\)

Có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+4>0\)

Hay:.............

b) \(x^2+11\)

Có: \(x^2\ge0\Rightarrow x^2+11>0\)

Hay:.............

c) \(4x^2-12x+11\)

\(=4\left(x^2-3x+\frac{11}{4}\right)\)

\(=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{2}\right)\)

\(=4\left(x-\frac{3}{2}\right)^2+2>0\)

d) \(x^2+5y^2+2x+6y+34\)

\(=x^2+2.x.1+1+y^2+4y^2+2.y.3+9+24\)

\(=\left(x^2+2.x.1+1\right)+\left(y^2+2.y.3+9\right)+4y^2+24\)

\(=\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24\)

Ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\\\left(2y\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24>0\)

f) \(x^2-2x+y^2+4y+6\)

\(=x^2-2.x.1+1+y^2+2.y.2+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)

3 tháng 7 2019

a) \(2x^2-8x+20\)

\(=2\left(x^2-4x+10\right)\)

\(=2\left(x^2-4x+4+6\right)\)

\(=2\left[\left(x-2\right)^2+6\right]\)

\(=2\left(x-2\right)^2+12>0\forall x\)

b) \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

c) \(x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x\)

19 tháng 9 2019

Cm: Ta có: 

a) A = x2 - 8x + 20 = (x2 - 8x + 16) + 4 = (x - 4)2 +  4 > 0 \(\forall\) x(vì (x - 4)2 \(\ge\)\(\forall\)x ; 4 > 0)

=> A luôn dương với mọi x

b) B = 4x2 - 12x + 11 = [(2x)2 - 12x + 9] + 2 = (2x - 3)2 + 2 > 0 \(\forall\)x (vì (2x - 3)2 \(\ge\)\(\forall\)x; 2 > 0)

=> B luôn dương với mọi x

c) C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x -  1/2)2 + 3/4 > 0 \(\forall\)x (vì (x - 1/2)2 \(\ge\)\(\forall\)x; 3/4 > 0)

=> C luôn dương với mọi x

* Tìm x

3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36

=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36

=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36

=> 8x + 76 = 36

=> 8x = 36 - 76

=> 8x = -40

=> x = -40 : 8 = -5

26 tháng 10 2021

Mấy bạn bị lms í=)) dễ v cũng ko biết làm

26 tháng 10 2021

Mình chỉ đăng lên để thử xem coi ai làm đc ko chứ mình cx ko biết làm. Ai jup mình vớiiiiii

13 tháng 7 2019

\(1.\)

\(a;A=-2x^2+4x-18\)

\(A=-2\left(x^2-4x+18\right)\)

\(A=-2\left(x^2-2.x.2+4+14\right)\)

\(A=-2\left(x-2\right)^2-14\le-14\)

Dấu = xảy ra khi : \(x-2=0\)

                              \(\Rightarrow x=2\)

Vậy Amax =-14 tại x = 2

Các câu còn lại lm tương tự........

14 tháng 7 2019

\(a-2x^2+4x-18\)

=-[(2x2-2x.2+4)+14]

=-[(2x-2)2+14]

=-(2x-2)2-14

Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14

Dấu "=" xảy ra khi x=1 

Vậy GTLN là -14 tại x=1

Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế

bài 2 xem lại cách ra đề nha bạn