K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

1.

\(x^2\)+\(y^2\)+2y-6x+10=0

=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0

=> (x-3)\(^2\)+(y+1)\(^2\)=0

pt vô nghiệm

7 tháng 8 2017

4.

=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0

=> (x+4)\(^2\)+(3y-2)\(^2\)=0

pt vô nghiệm


11 tháng 10 2020

a) x2 + 4y + 4y2 + 26 - 10x = ( x2 - 10x + 25 ) + ( 4y2 + 4y + 1 ) = ( x - 5 )2 + ( 2y + 1 )2

b) 4y2 + 34 - 10x + 12y + x2 = ( x2 - 10x + 25 ) + ( 4y2 + 12y + 9 ) = ( x - 5 )2 + ( 2y + 3 )2

c) -10x + y2 - 8y + x2 + 41 = ( x2 - 10x + 25 ) + ( y2 - 8y + 16 ) = ( x - 5 )2 + ( y - 4 )2

d) x2 + 9y2 - 12y + 29 - 10x = ( x2 - 10x + 25 ) + ( 9y2 - 12y + 4 ) = ( x - 5 )2 + ( 3y - 2 )2

11 tháng 10 2020

a) \(x^2+4y+4y^2+26-10x\)

\(=\left(x^2-10x+25\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-5\right)^2+\left(2y+1\right)^2\)

b) \(4y^2+34-10x+12y+x^2\) đề ntn à?

\(=\left(4y^2+12y+9\right)+\left(x^2-10x+25\right)\)

\(=\left(2y-3\right)^2+\left(x-5\right)^2\)

c) \(-10x+y^2-8y+x^2+41\)

\(=\left(x^2-10x+25\right)+\left(y^2-8y+16\right)\)

\(=\left(x-5\right)^2+\left(y-4\right)^2\)

d) \(x^2+9y^2-12y+29-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2-12y+4\right)\)

\(=\left(x-5\right)^2+\left(3y-2\right)^2\)

7 tháng 8 2017

1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)

2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)

3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)

\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)

ta có : \(\left(3x+2\right)^2\ge0\forall x\)\(\left(2y-2\right)^2\ge0\forall y\)

\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)

\(\Rightarrow\) phương trình vô nghiệm

11 tháng 6 2018

1) \(4x^2-12x+y^2-4y+13\)

\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)

\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)

\(=\left(2x-3\right)^2+\left(y-2\right)^2\)

2) \(x^2+y^2+2y-6x+10\)

\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)

\(=\left(x+1\right)^2+\left(y-3\right)^2\)

3) \(4x^2+9y^2-4x+6y+2\)

\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)

\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)

4) \(y^2+2y+5-12x+9x^2\)

\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)

\(=\left(y+1\right)^2+\left(3x-2\right)^2\)

5) \(x^2+26+6y+9y^2-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)

\(=\left(x-5\right)^2+\left(3y+1\right)^2\)

24 tháng 9 2021

a. x2 + 6x + 9 = (x + 3)2

b. 25 + 10x + x2 = (5 + x)2

c. x2 + 8x + 16 = (x + 4)2

d. x2 + 14x + 49 = (x + 7)2

e. 4x2 + 12x + 9 = (2x + 3)2

f. 9x2 + 12x + 4 = (3x + 2)2

h. 16x2 + 8 + 1 = (4x + 1)2

i. 4x2 + 12xy + 9y2 = (2x + 3y)2

k. 25x2 + 20xy + 4y2 = (5x + 2y)2

24 tháng 9 2021

a) \(=\left(x+3\right)^2\)

b) \(=\left(x+5\right)^2\)

c) \(=\left(x+4\right)^2\)

d) \(=\left(x+7\right)^2\)

e) \(=\left(2x+3\right)^2\)

f) \(=\left(3x+2\right)^2\)

h) \(=\left(4x+1\right)^2\)

i) \(=\left(2x+3y\right)^2\)

k) \(=\left(5x+2y\right)^2\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)