K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

B =  x2 + 4x + 6
   = (x2 + 4x + 4) + 2
   = (x + 2)2 + 2 > 0

D =  x2 + x + 1
   = (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
   = (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0

F =  2x2 + 4x + 3
   = (2x2 + 4x + 2) + 1
   = (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0

H =  4x2 + 4x + 2
   = (4x2 + 4x + 1) + 1
   = (2x + 1)2 + 1 > 0

K =  4x2 + 3x + 2
   = (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
   = (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0

L =  2x2 + 3x + 4
   = (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
   = (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0

Vậy các biểu thức trên luôn dương với mọi x

21 tháng 6 2017

\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)

\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)

Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x

24 tháng 8 2018

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)

\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)

\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)

Bạn làm tương tự nhé

26 tháng 6 2019

x^2 + 2x + 2

= x^2 + 2x + 1 + 1

= (x + 1)^2 + 1 > 1

=> dương với mọi x

19 tháng 9 2017

3L = -x2 + 6x - 15

= -(x - 3)2 - 6

=> L = \(\frac{-\left(x-3\right)^2}{3}-2\le-2\) \(\forall x\)

18 tháng 12 2017

A = (2x - 3)(3x + 5) - (x - 1)(6x + 2) + 3 - 5x

= 6x2 + 10x - 9x - 15 - 6x2 - 2x + 6x + 2 + 3 - 5x

= (6x2 - 6x2) + (10x - 9x - 2x + 6x - 5x) - (15 - 2 - 3)

= -10

Vậy A ko phụ thuộc vào giá trị của biến x

18 tháng 12 2017

a, A = 6x^2+x-15-6x^2+4x+2+3-5x = -10 

=> Gía trị của biểu thức A ko phụ thuộc vào giá trị của biến

k mk nha