\(n^2+11n+39⋮49\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Ta có:
giả sử: A = n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm

26 tháng 12 2016

hình như sai đề phải bạn

15 tháng 8 2018

Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

b: Giả sử B chia hết cho 49

=>B chia hết cho 7

=>(n+2)(n+9)+21 chia hết cho 7

=>(n+2)(n+9) chia hết cho 7

Vì n+9-n-2=7 chia hết cho 7 nên n+9 và n+2 đồng thời chia hết cho 7

=>(n+9)(n+2) chia hết cho 49

=>(n+2)(n+9)+21 chia hết cho 49(vô lý)

=>B không chia hết cho 49

a: \(A=n^3-n-6n\)

\(=n\left(n-1\right)\left(n+1\right)-6n\)

Vì n;n-1;n+1 là 3 số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

hay A chia hết cho 6

15 tháng 11 2016

giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7 
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7 
=> (n+9)(n+2) chia hết cho 7 
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7 
=>(n+9)(n+2) chia hết cho 49 
mà: (n+9)(n+2) +21 chia hết cho 49 
=> 21 chia hết cho 49 vô lí => đpcm 

Bài 2: A=3^ (2*n) + 3^n + 1 
n không chia hết cho 3 nên ta xét 2 trường hợp: 
* n =3k +1: 
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1 
= 9.(26+1)^2k + 3.(26 +1)^k +1 
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1 
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13. 
( Mình giải thích thêm nhé: 
(2.13 +1)^2k chia cho 13 dư 1 
=> 9(2.13 +1)^2k chia cho 13 dư 9 
(2.13 +1)^k chia 13 dư 1 
=> 3.(2.13 +1)^k chia 13 dư 1 
=> A chia 13 dư 9 + 3 +1 = 13 
A = 13.k +13 với k nguyên 
A/13 = k + 1 la số nguyên => A chia hết cho 13 
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.) 
* n = 3k +2: 
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1 
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1 
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13 

15 tháng 11 2016

ban oi mik lon bai rui

6 tháng 11 2017

Đặt A=3\(^{n+2}\)-2\(^{n+2}\)+3\(^n\)-2\(^n\)

      A=3\(^n\).9-2\(^n\).4+3\(^n\)-2\(^n\)

      A=3\(^n\).10-2\(^n\).5

Có 3^n.10 chia hết cho 10

     2^n chia hết cho 2;5 chia hết cho 5.Mà(2,5)=1\(\Rightarrow\)2^n.5 chia hết cho 10

Vậy A chia hết cho 10
 

13 tháng 2 2020

\(n^2-3n+25=n^2+2n-5n-10+35\)

\(=n\left(n+2\right)-5\left(n+2\right)+35=\left(n+2\right)\left(n-5\right)+35\)

\(\left(n+2\right)-\left(n-5\right)=7⋮7\)

=> \(n+2\)\(n-5\) có cùng số dư khi chia 7

+ TH1: \(\left\{{}\begin{matrix}n+2⋮7\\n-5⋮7\end{matrix}\right.\) \(\Rightarrow\left(n+2\right)\left(n-5\right)⋮49\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸̸49\)

hay \(n^2-3n+25⋮̸49\)

+ TH2 : \(\left\{{}\begin{matrix}n+2⋮̸7\\n-5⋮̸7\end{matrix}\right.\) \(\Rightarrow\left(n+2\right)\left(n-5\right)⋮̸7\)

\(\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸7\) \(\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸49\)

Vậy trong mọi TH ta đề có \(n^2-3n+25⋮̸49\) \(\forall n\in Z\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:
Phản chứng. Giả sử $n^2-3n+25$ chia hết cho $49$

$\Rightarrow n^2-3n+25\vdots 7$

$\Rightarrow n^2-3n+7n+25-21\vdots 7$

$\Rightarrow n^2+4n+4\vdots 7$

$\Rightarrow (n+2)^2\vdots 7\Rightarrow n+2\vdots 7$

Đặt $n+2=7k$ với $k$ nguyên.

$\Rightarrow n^2-3n+25=49k^2-49k+35$ không chia hết cho $49$ (vô lý)

Vậy điều giả sử là sai. Tức là $n^2-3n+25$ không chia hết cho $49$

4 tháng 9 2018

Ta có:

\(n^4+6n^3+11n^2+6n\)

\(=n\left(n^3+6n^2+11n+6\right)\)

\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(n^2+5n+6\right)\)

\(=n\left(n+1\right)\left(n^2+3n+2n+6\right)\)

\(=n\left(n+1\right)\left[n\left(n+3\right)+2\left(n+3\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì tích 4 số nguyên liên tiếp luôn chia hết cho 24

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24