Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).
b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .
=> ( đpcm ).
Vì Nếu n = 0 thì 60 = 1 còn 6.0=0
Nên 6n không chia hết cho 6n với mọi n thuộc N
6n ko chia hết cho 6n với mọi n thuộc N vì n = 0 thì 6n = 1 và 6n = 6
Tk mk nha
Mình không hiểu lắm bạn à ... nó không có kết quả cụ thể sao ?
Ta có:\(A=n^3+11n=n^3-n+12n\)
=\(n\left(n^2-1\right)+12n\)
Lại có: \(n^2-1=\left(n-1\right)\left(n+1\right)\)
\(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮6\).
Mà \(12n⋮6\) \(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)\(⋮6\)
\(\Rightarrow A=n^3+11n⋮6\left(đpcm\right)\)
A = \(\frac{3n-11}{n-4}\)
= \(\frac{3\left(n-4\right)+1}{n-4}\)
= \(3+\frac{1}{n-4}\)
Để A thuộc Z <=> \(\frac{1}{n-4}\)thuộc Z
<=> \(n-4\)thuộc ước của \(1\)
<=> \(n-4\) thuộc { \(1;-1\)}
<=> \(n\)thuộc { \(5;3\)}
B = \(\frac{6n+5}{2n-1}\)
= \(\frac{3\left(2n-1\right)+8}{2n-1}\)
=\(3+\frac{8}{2n-1}\)
Để B thuộc Z <=> \(\frac{8}{2n-1}\) thuộc Z
<=> \(2n-1\)thuộc ước của \(8\)
<=> \(2n-1\) thuộc { \(1;-1;2;-2;4;-4;8;-8\)}
<=> \(2n\) thuộc {\(-7;-3;-1;0;2;3;5;9\)}
mà \(n\)thuộc Z => \(n\)thuộc { \(0;1\)}
Ta có:
\(n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n^2+3n+2n+6\right)\)
\(=n\left(n+1\right)\left[n\left(n+3\right)+2\left(n+3\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì tích 4 số nguyên liên tiếp luôn chia hết cho 24
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24