K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2023

\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

\(=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)

\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

\(\Rightarrow dpcm\)

18 tháng 7 2023

\(VP=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)=\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y=\)

\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=VT\)

13 tháng 7 2016

Ta có \(\left(x+y\right)^3\)=\(x^3+3x^2y+3xy^2+y^3\)

Mà \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)=\(x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)\(=x^3+\left(-6x^2y+9x^2y\right)+\left(-6xy^2+9xy^2\right)+y^3\)

=\(x^3+3x^2y+3xy^2+y^3\)=\(\left(x+y\right)^3\)

=>đpcm

13 tháng 7 2016

dạ e k gõ lm ak

9 tháng 7 2019

\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=\left(x^5+y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5+y^5\)

18 tháng 7 2019

1: \(\left(x-y\right)^3+\left(x+y\right)^3-6xy^2\)

\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^3+y^3-6xy^2\)

\(=2x^3\)

2: \(8x^3-36x^2y+54xy^2-28y^3\)

\(=8x^3-36x^2y+54xy^2-27y^3-y^3\)

\(=\left(2x-3y\right)^3-y^3\)

3: \(x^3-3x^2+3x-2\)

\(=x^3-3x^2+3x-1-1\)

\(=\left(x-1\right)^3-1\)

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

8 tháng 11 2015

câu hỏi tương tự