Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)
\(=\dfrac{19}{2}x^2-6x-22\)
Vậy biểu thức trên phụ thuộc vào biến x.
b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)
Giải:
VT = \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3+y^2+y-y^2-y-1\)
\(=y^3-1\)
Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).
Giải:
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)
Vậy biểu thức trên phụ thuộc vào biễn x
b) \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3-y^2+y^2-y+y-1\)
\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)
\(=y^3-1\)
Vậy ...
nhìn zậy thoy chứ dễ lắm mik làm vd 2 bài còn lại bn làm có gì bí thì hỏi mik
a) biến đổi vế trái ta có : \(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)( = vế phải )
b) BĐVT ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)= VP
x^3 + 3x^2y + 3xy^2 + y^3 - ( x^3 - 3x^2y + 3xy^2 - y^3)
= x^3 + 3x^2y + 3xy^2 + y^3 - x^3 + 3x^2y - 3xy^2 + y^3
= 6x^2y + 2y^3
= 2y( 3x^2 + y^2)
=> ĐPCM
( x + y ) 3 - ( x - y ) 3 = 2y( 3x2 + y2 )
biến đổi vế trái
x3 + 3x2y+3xy2+y2 - x3 + 3x2y-3xy2+y2=3x2y+3x2y+y3+y3
= 2y(3x2+y2)
vậy vt = vp
bạn c/m cho nó lớn hơn hoặc nhỏ hơn 0 đi mk ngại làm vì hơi nhìu ^.^ sory
bài này chỉ có hsg như tui, alibaba nguyễn, hoàng lê bảo ngọc ..... làm dc
a) ( x - 1 )3 + 3x( x - 1 )2 + 3x2( x - 1 ) + x3
= [ ( x - 1 ) + x ) ]3 ( HĐT số 4 )
= [ x - 1 + x ]3
= [ 2x - 1 ]3
=> đpcm
b) ( x2 - 2xy )3 + 3( x2 - 2xy )y2 + 3( x2 - 2xy )y4 + y6
= [ ( x2 - 2xy ) + y2 ]3 ( HĐT số 4 )
= [ x2 - 2xy + y2 ]3
= [ ( x - y )2 ]3
= ( x - y )6
=> đpcm
Ta có \(\left(x+y\right)^3\)=\(x^3+3x^2y+3xy^2+y^3\)
Mà \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)=\(x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
\(x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)\(=x^3+\left(-6x^2y+9x^2y\right)+\left(-6xy^2+9xy^2\right)+y^3\)
=\(x^3+3x^2y+3xy^2+y^3\)=\(\left(x+y\right)^3\)
=>đpcm
dạ e k gõ lm ak