K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

các bạn ơi giúp mk vs

15 tháng 6 2018

Bài 1. Ta có : \(xy+\dfrac{1}{xy}=16xy-15xy+\dfrac{1}{xy}\)

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(x+y\)\(2\sqrt{xy}\)

\(\left(x+y\right)^2\)\(4xy\)

\(\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) ≥ xy

⇔ - 15xy ≥ \(\dfrac{1}{4}.\left(-15\right)=\dfrac{-15}{4}\)

CMTT , \(16xy+\dfrac{1}{xy}\)\(2\sqrt{16xy.\dfrac{1}{xy}}=2.\sqrt{16}=8\)

\(16xy+\dfrac{1}{xy}\) - 15xy ≥ \(8-\dfrac{15}{4}=\dfrac{17}{4}\)

2 tháng 1 2018

post ít một thôi

9 tháng 1 2019

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  được

\(VT\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu "=" xảy ra khi x = y = 1/2

Vậy ...........

10 tháng 1 2019

Cũng ko hẳn là cách khác nhưng xem cho vui v :) 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y