Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(m=a^2+bc\);\(n=b^2+2ca\);\(p=c^2+2ab\)
Lúc đó: \(m+n+p=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)^2< 1\)(vì a + b + c < 1 )
\(BĐT\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge9\)và m + n + p < 1 ; m,n,p > 0
Áp dụng BĐT Cô -si cho 3 số không âm:
\(m+n+p\ge3\sqrt[3]{mnp}\)
và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge3\sqrt[3]{\frac{1}{mnp}}\)
\(\Rightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)
Mà m + n + p < 1 nên \(\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)
hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge9\)
\(a-b=a^3+b^3\Rightarrow a-b>0\)
Ta có:\(a^3+b^3>a^3-b^3\)
\(\Rightarrow a-b>a^3-b^3\)
\(\Rightarrow a-b>\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow a^2+ab+b^2< 1\Rightarrow a^2+b^2< 1\) vì \(ab>0\)
b)
Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)
~ ~ ~ ~ ~
\(abc=ab+bc+ca\)
\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)
\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)
\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{3}{16}\) (đpcm)
Dấu "=" xảy ra khi a = b = c
post ít một thôi