K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  được

\(VT\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu "=" xảy ra khi x = y = 1/2

Vậy ...........

10 tháng 1 2019

Cũng ko hẳn là cách khác nhưng xem cho vui v :) 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

17 tháng 7 2019

Bài 1:

Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)

Dấu \(=\) xảy ra khi \(x=y, xy=1\)\(x+y=2\) hay \(x=y=1\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

Áp dụng BĐT Cô-si cho các số dương:

\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)

\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)

Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

3 tháng 6 2019

P=1/(x+y)(x^2-xy+y^2)+1/xy

P=1/(x^2-xy+y^2)+1/xy ( vĩ+y=1)

P=1/(x^2-xy+y^2)+3/xy

Đến đây áp dụng bất đẳng thức Svac có

P>=(√3+1)^2/(x+y)^2

P>=(√3+1)^2 (vì x+y=1)

hay P>=4+2√3(đpcm)

4 tháng 5 2019

1.

Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)

Dấu "=" khi a = b.

Áp dụng:

\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)

\(=4+2+5=11\)

Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)

4 tháng 5 2019

\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)

\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)

\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)

\(\Delta=P^2-4\left(1-P\right)^2\)

\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)

Để P có GTNN và GTLN thì phương trình (*) có nghiệm

\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)

\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)

\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)

\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

NV
19 tháng 3 2019

\(P=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{3+\sqrt{6\sqrt{3}-9}}{6}\\y=\frac{3-\sqrt{6\sqrt{3}-9}}{6}\end{matrix}\right.\) và hoán vị

NV
19 tháng 3 2019

Cụ thể hơn:

\(\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\)

\(=\frac{1^2}{1-3xy}+\frac{\left(\sqrt{3}\right)^2}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}\)

Dấu "=" xảy ra khi

\(\frac{1-3xy}{1}=\frac{3xy}{\sqrt{3}}\Rightarrow1-3xy=\sqrt{3}xy\)

25 tháng 9 2018

với 2 số dương a,b ta luôn có

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\):\(\left(a+b\right)^2\ge4ab\)

Áp dụng vào bài toán, ta có

\(\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{2}{2xy}\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{2}{4xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)(vì x+y=1)

25 tháng 9 2018

Ta có: x2+y2≤(x+y)2/2 => 1/(x2+y2)≥2/(x+y)2=2

xy≤(x+y)2/4 => 1/xy≥4/(x+y)2=4

=>1/(x2+y2)+1/xy≥2+4=6

Dấu "=" xảy ra khi x=y=1/2

10 tháng 7 2019

\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có

\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)

       \(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
        \(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)

10 tháng 7 2019

\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)

13 tháng 4 2020

Áp dung BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)

\(=>x,y,z>0\left(taco\right)\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+xz}\)

\(=>P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\)

\(=>P\ge\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}\right)+\frac{7}{xy+yz+xz}\)

\(\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{xy+yz+zx}\)

\(=\frac{9}{\left(x+y+z\right)^2}+\frac{7}{xy+yz+xz}\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}\ge30\)

do \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2and\left(x+y+z=1\right)\)

dấu = xảy ra khi x=y=z=1/3

zậy...........