K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

dùng hằng đẳng thức nhé bạn

\(N=2x^4+4x^2y^2+2y^4-y^4-x^2y^2+y^2\)

\(N=2\left(x^4+2x^2y^2+y^4\right)-y^2\left(x^2+y^2\right)+y^2\)

\(N=2\left(x^2+y^2\right)^2-y^2\left(x^2+y^2\right)+y^2\)

mà ta có: \(x^2+y^2=1\)

\(\Rightarrow N=2-y^2+y^2=2\)

chúc bạn học tốt

9 tháng 8 2015

Bài 1:A=4x4+7x2y2+3y4+5y2=4x2(x2+y2)+3y2(x2+y2)+5y2=20x2+15y2+5y2=20(x2+y2)=100.

 

3 tháng 4 2017

A=4x4+7x2y2+3y4+5y2

=4x2(x2+y2)+3y2(x2+y2)+5y2

=20x2+15y2+5y

=20x2+(15+5)y2

=20(x2+y2)=100

27 tháng 3 2016

\(N=2x^4+3x^2y^2+y^4+y^2\)

\(N=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(N=2x^2x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)

\(N=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2+1\right)\)

Thay x2+y2=1 vào ta được:

\(N=2x^2.1+y^2.\left(1+1\right)=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)

Vậy N=2
 

28 tháng 3 2018

Ta có: 

\(2x^4+3x^2y^2+y^4+y^2=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

                                               \(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

                                               \(=2x^2+y^2+y^2\)

                                               \(=2\left(x^2+y^2\right)=2.1=2\)

28 tháng 3 2018

\(2x^4+3x^2y^2+y^4+y^2\text{ v}ớ\text{i }x^2+y^2=1\)

\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2.y^2+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2.1+y^2.1+y^2\)

\(=2x^2+y^2+y^2\)

\(=2x^2+2y^2\)

\(=2\left(x^2+y^2\right)=2.1=2\)

\(M=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

Vật M=2

8 tháng 8 2019

\(M=2x^4+3x^2y^2+y^4+y^2\) với \(x^2+y^2=1\)

\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2.1+y^2.1+y^2\)

\(=2x^2+y^2+y^2\)

=\(2\left(x^2+y^2\right)\)

\(=2.1=2\)

\(\Rightarrow M=2\)

26 tháng 4 2017

N=3x2.x2+ 3x2y2 + 3y2

N=3x2(x2+y2) + 3y2

N=3x2.1+ 3y2 = 3x2+3y2

N=3(x2+y2)=3.1

N=3

28 tháng 3 2018

         \(x^4+4x^3y+6x^2y^2+4xy^3+y^4-x-y-10\)

\(=\left(x^4+2x^3y+x^2y^2\right)+\left(2x^3y+4x^2y^2+2xy^3\right)+\left(x^2y^2+2xy^3+y^4\right)-\left(x+y\right)-10\)

\(=x^2\left(x^2+2xy+y^2\right)+2xy\left(x^2+2xy+y^2\right)+y^2\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)

\(=\left(x^2+2xy+y^2\right)\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)

\(=\left(x+y\right)^2\left(x+y\right)^2-\left(x+y\right)-10\)

\(=\left(x+y\right)^4-\left(x+y\right)-10\)

\(=2^4-2-10\) \(=4\)

13 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{2x}\\ \Rightarrow\dfrac{3xz-2yz}{4z}=\dfrac{2yz-4xy}{3y}=\dfrac{4xy-3xz}{2x}=\dfrac{\left(3xz-3xz\right)+\left(2yz-2yz\right)+\left(4xy-4xy\right)}{4z+3y+2x}=0\\ \Rightarrow3x-2y=2z-4x=4y-3z=0\\ \Rightarrow3x=2y;2z=4x;4y=3z\)

3x=2y => \(\dfrac{x}{2}=\dfrac{y}{3}\)

4x=2z\(\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\)

\(\dfrac{\Rightarrow x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\\ \Rightarrow x=2k;y=3k;z=4k\)

Thế dô A ; tự tinh !!