Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
độ dài đường chéo AC là
\(\sqrt{48^2+36^2}=\sqrt{2304+1296}=\sqrt{3600}=60\)(cm)
vậy độ dài đường chéo AC là 60cm
Giải:
Theo định lí Pytago, ta có:
AC2= AD2 +CD2
= 482 + 362
= 2304 + 1296= 3600
AC= 60 (cm)
Áp dụng định lí Py-ta-go trong ΔACD vuông tại D ta có:
AC2 = AD2 + CD2 = 482 + 362 = 2304 + 1296 = 3600
⇒ AC = 60(cm)
Ta có hình vẽ:
B C A D 48cm 36cm
Giải:
Xét \(\Delta ACD\) có \(\widehat{D}=90^o\) vì \(ABCD\) là hình chữ nhật.
\(\Rightarrow A^2=AD^2+DC^2\) ( theo định lí Pitago)
Mà \(DC=36cm;AD=48cm\)
Nên \(AC^2=48^2+36^2\)
\(AC^2=2304+1296\)
\(AC^2=3600\)
\(\Rightarrow AC=60cm\)
Vậy độ dài của đoạn \(AC\) là \(60cm\)
Bài 1 : A B C D 4
Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
\(\Rightarrow AB=BC=CD=AD=4\)cm
Áp dụng định lí pytago tam giác ADC vuông tại D ta có :
\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm
Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm
Bài 2 :
A B C D 3 căn27
Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)
Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :
\(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm
Vì ABCD là hcn => AB = CD = 36 cm
Theo định lí Pytago tam giác ADC vuông tại D
\(AC=\sqrt{AD^2+DC^2}=60cm\)
A B C D 48 36
XÉT TAM GIÁC DAC (\(\widehat{D}=90^O\)) CÓ
\(AC^2=AD^2+DC^2\)(ĐỊNH LÍ PY-TA-GO)
\(\Rightarrow AC^2=48^2+36^2\)
\(\Rightarrow AC^2=3600\)
\(\Rightarrow AC=60\)
VẬY ĐỘ DÀI AC LÀ 60cm