Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 48 36
XÉT TAM GIÁC DAC (\(\widehat{D}=90^O\)) CÓ
\(AC^2=AD^2+DC^2\)(ĐỊNH LÍ PY-TA-GO)
\(\Rightarrow AC^2=48^2+36^2\)
\(\Rightarrow AC^2=3600\)
\(\Rightarrow AC=60\)
VẬY ĐỘ DÀI AC LÀ 60cm
Áp dụng định lí Py-ta-go trong ΔACD vuông tại D ta có:
AC2 = AD2 + CD2 = 482 + 362 = 2304 + 1296 = 3600
⇒ AC = 60(cm)
Ta có hình vẽ:
B C A D 48cm 36cm
Giải:
Xét \(\Delta ACD\) có \(\widehat{D}=90^o\) vì \(ABCD\) là hình chữ nhật.
\(\Rightarrow A^2=AD^2+DC^2\) ( theo định lí Pitago)
Mà \(DC=36cm;AD=48cm\)
Nên \(AC^2=48^2+36^2\)
\(AC^2=2304+1296\)
\(AC^2=3600\)
\(\Rightarrow AC=60cm\)
Vậy độ dài của đoạn \(AC\) là \(60cm\)
Điểm C nằm giữa B và D nên BC < BD (1)
Điểm C nằm giữa B và E nên BD < BE (2)
Vì B, C, D, E thẳng hàng. Từ (1) và (2) suy ra
BC < BD < BE
AB⊥BE
Suy ra: AB < AC < AD < AE.
Vẽ đoạn thẳng AD.
∆ADB và ∆DAC có:
ˆA1A1^= ˆD1D1^(so le trong AB//CD)
AD là cạnh chung.
A2^=D2^(So le trong, AC//BD)
Do đó ∆ADB=∆DAC(g.c .g)
Suy ra: AB=CD, BD=AC
Xem thêm tại: http://loigiaihay.com/bai-38-trang-124-sach-giao-khoa-toan-7-tap-1-c42a5073.html#ixzz4elm8F0eT
A B C D
Vẽ đoạn thẳng AD.
∆ADB và ∆DAC có:
\(\widehat{A^1}\)= \(\widehat{D^1}\)(so le trong AB//CD)
AD là cạnh chung.
\(\widehat{A^2}\)=\(\widehat{D^2}\)(So le trong, AC//BD)
Do đó ∆ADB=∆DAC(g.c .g)
Suy ra: AB=CD, BD=AC
Xét ΔAEB có
AC là đường cao
BD là đường cao
EK là đường cao
Do đó: AC,BD,EK cùng đi qua một điểm
Ta có: AB2=AM2+MB2
=22+12=5
Nên AB= √5
AC2=AN2+NC2
=9+16=52
nên AC=5
BC2=BK2+KC2
= 32+52=9+25=34
BC= √34
Giải:
Ta có: AB2=AM2+MB2
=22+12=5
Nên AB= √5
AC2=AN2+NC2
=9+16=52
nên AC=5
BC2=BK2+KC2
= 32+52=9+25=34
BC= √34
Ta có: \(BC=1.\)
+ Xét \(\Delta ABE\) vuông tại E có:
\(AB^2=AE^2+BE^2\) (định lí Py - ta - go).
=> \(AB^2=5^2+1^2\)
=> \(AB^2=25+1\)
=> \(AB^2=26\)
=> \(AB=\sqrt{26}\) (vì \(AB>0\)).
+ Xét \(\Delta CDF\) vuông tại F có:
\(CD^2=DF^2+CF^2\) (định lí Py - ta - go).
=> \(CD^2=2^2+2^2\)
=> \(CD^2=4+4\)
=> \(CD^2=8\)
=> \(CD=\sqrt{8}\) (vì \(CD>0\)).
+ Xét \(\Delta ADG\) vuông tại G có:
\(AD^2=AG^2+DG^2\) (định lí Py - ta - go).
=> \(AD^2=4^2+3^2\)
=> \(AD^2=16+9\)
=> \(AD^2=25\)
=> \(AD=5\) (vì \(AD>0\)).
Vậy \(AB=\sqrt{26};BC=1;CD=\sqrt{8};AD=5.\)
Chúc bạn học tốt!
Ta tính được : AB = \(\sqrt{26}\) ; CD = \(\sqrt{8}\) ; BC = 1 ; DA = 5
độ dài đường chéo AC là
\(\sqrt{48^2+36^2}=\sqrt{2304+1296}=\sqrt{3600}=60\)(cm)
vậy độ dài đường chéo AC là 60cm
Giải:
Theo định lí Pytago, ta có:
AC2= AD2 +CD2
= 482 + 362
= 2304 + 1296= 3600
AC= 60 (cm)