...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điểm C nằm giữa B và D nên BC < BD (1)

Điểm C nằm giữa B và E nên BD < BE (2)

Vì B, C, D, E thẳng hàng. Từ (1) và (2) suy ra

BC < BD < BE

AB⊥BE

Suy ra: AB < AC < AD < AE.

20 tháng 4 2017

độ dài đường chéo AC là

\(\sqrt{48^2+36^2}=\sqrt{2304+1296}=\sqrt{3600}=60\)(cm)

vậy độ dài đường chéo AC là 60cm

20 tháng 4 2017

Giải:

Theo định lí Pytago, ta có:

AC2= AD2 +CD2

= 482 + 362

= 2304 + 1296= 3600

AC= 60 (cm)

19 tháng 5 2017

Các tam giác bằng nhau:
\(\Delta ABC=\Delta EDC\left(c-g-c\right)\)

\(\Delta ACD=\Delta ECB\left(c-g-c\right)\)

\(\Delta ABD=\Delta EDB\left(c-c-c\right)\)

\(\Delta ABE=\Delta EDA\left(c-c-c\right)\).

29 tháng 12 2019

Ta có: \(BC=1.\)

+ Xét \(\Delta ABE\) vuông tại E có:

\(AB^2=AE^2+BE^2\) (định lí Py - ta - go).

=> \(AB^2=5^2+1^2\)

=> \(AB^2=25+1\)

=> \(AB^2=26\)

=> \(AB=\sqrt{26}\) (vì \(AB>0\)).

+ Xét \(\Delta CDF\) vuông tại F có:

\(CD^2=DF^2+CF^2\) (định lí Py - ta - go).

=> \(CD^2=2^2+2^2\)

=> \(CD^2=4+4\)

=> \(CD^2=8\)

=> \(CD=\sqrt{8}\) (vì \(CD>0\)).

+ Xét \(\Delta ADG\) vuông tại G có:

\(AD^2=AG^2+DG^2\) (định lí Py - ta - go).

=> \(AD^2=4^2+3^2\)

=> \(AD^2=16+9\)

=> \(AD^2=25\)

=> \(AD=5\) (vì \(AD>0\)).

Vậy \(AB=\sqrt{26};BC=1;CD=\sqrt{8};AD=5.\)

Chúc bạn học tốt!

26 tháng 5 2017

Ta tính được : AB = \(\sqrt{26}\) ; CD = \(\sqrt{8}\) ; BC = 1 ; DA = 5

13 tháng 5 2017

Xét tam giác IAC và IBD có:

IA = IB ( theo đề bài)

Góc AIC = góc BID ( 2 góc đối đỉnh)

IC = ID ( theo đề bài )

Do đó: tam giác IAC = tam giác IBD (c.g.c)

Suy ra góc ACI = góc BDI ( 2 góc tương ứng) \(\left(1\right)\)

Suy ra góc IAC = IBD ( 2góc tương ứng) (*)

Có I nằm giữa B và C

Suy ra: BI + CI = BC (2)

Có I nằm giữa A và D

Suy ra: AI + DI = AD (3)

Từ 2 và 3 suy ra: BC = AD (4)

Có góc OAI + góc IAC = \(180^0\)(2 góc kề bù)

góc OBI + góc IBD = \(180^0\)(2 góc kề bù)

mà: góc IAC = góc IBD (*)

Suy ra góc: OAI = góc OBI (5)

Xét tam giác: OAD và tam giác OBC có:

góc ACI = góc BDI (1)

AD = BC (4)

góc OAI = góc OBI (5)

Do đó: tam giác OAD = tam giác OBC (g.c.g)

Suy ra: OA = OB (2 cạnh tương ứng)

Xét tam giác IAC và tam giác IBD có:

IA = IB ( gt)

Góc AIC = góc BID ( 2 góc đối đỉnh)

IC = ID ( gt )

=> Tam giác IAC = tam giác IBD (c.g.c)

=> Góc ACI = góc BDI ( 2 góc tương ứng) (1)

và góc IAC = IBD ( 2góc tương ứng) (*)

Có I nằm giữa B và C

Suy ra: BI + CI = BC (2)

Có I nằm giữa A và D

Suy ra: AI + DI = AD (3)

Từ 2 và 3 suy ra: BC = AD (4)

Có góc OAI + góc IAC = 1800 (2 góc kề bù)

góc OBI + góc IBD = 1800 (2 góc kề bù)

mà: góc IAC = góc IBD (*)

=> góc: OAI = góc OBI (5)

Xét tam giác OAD và tam giác OBC có:

góc ACI = góc BDI (1)

AD = BC (4)

góc OAI = góc OBI (5)

=> Tam giác OAD = tam giác OBC (g.c.g)

=> OA = OB (2 cạnh tương ứng)

12 tháng 3 2018

Hình chiếu của AN < hình chiếu của AC

=> đường xiên BN < đường xiên của BC (1)

Hình chiếu của AM < hình chiếu AB => đường xiên MN < đường xiên NB. (2)

Từ (1) và (2) suy ra:

MN< BN< BC.

12 tháng 3 2018

Ta có AN+NC=AC

\(\Rightarrow\)AN < AC mà AN là hình chiếu của đường xiên MN,AC là hình chiếu của đường xiên BC

\(\Rightarrow\)MN<BC (đpcm)

mik lm hơi vắn tắt 1 xíuleuleu

13 tháng 5 2017

Tam giác AEC có góc AEC = \(90^0\)

=> \(AC^2=AE^2+EC^2\)

=>\(EC^2=AC^2-AE^2\)

=>\(EC^2=5^2-4^2\)

=>\(EC=\sqrt{9}=3\left(m\right)\)

Có EB + EC = BC

=>EB = BC - EC

=>EB = 9 - 3

=> EB = 6 (m)

Tam giác AEB có góc AEB = \(90^0\)

=>\(AB^2=AE^2+EB^2\)

=>\(AB^2=4^2+6^2\)

=>\(AB^2=16+36\)

=>\(AB^2=52\)

=>\(AB=\sqrt{52}=2\sqrt{13}\) (m)

Xét ΔAEB có 

AC là đường cao

BD là đường cao

EK là đường cao

Do đó: AC,BD,EK cùng đi qua một điểm

20 tháng 4 2017

undefined

undefined

6 tháng 2 2018

a/x=13

b/x=\(\sqrt{5}\)

c/x=20

d/x=4