Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1 đến 2n+1 có: (2n+1-1):2+1=n+1(số hạng)
=>B=(1+2n+1).(n+1):2
=>B=(2n+2).(n+1):2
=>B=2.(n+1).(n+1):2
=>B=(n+1)2.2:2
=>B=(n+1)2
Vậy B là bình phương của n+1
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2x+3\right)}=\frac{n+1}{2n+3}\)
=>\(2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2n+3\right)}\right)=2x\frac{n+1}{2n+3}\)
=>\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}=\frac{2n+2}{2n+3}\)
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
=>\(1-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
=>\(\frac{2n+2}{2n+3}=\frac{2n+2}{2n+3}\)
=>.....
\(3-2n⋮n-1\)
\(\Rightarrow2\left(n-1\right)⋮n-1\)
\(2n-2⋮n-1\)
\(\Leftrightarrow\left(3-2n\right)+\left(2n-2\right)⋮n-1\)
\(1⋮n-1\)
\(n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(n\in\left\{2;0\right\}\)
Ta có :
A = n . (1 + 4) vậy A là số lẻ vì cứ cách 4 đến 5 là số lẻ
B = 2n . (1 + 5) vậy B là số chẵn vì cách 2 đến 3 là số chẵn
đấp án : xong nha bạn
A=số lẻ x số chẵn; B=số lẻ x số lẻ (vì có +1 và +5)
-> A là số chẵn, B là số lẻ
B=\(\frac{\left(n+1\right)\left(2n+2\right)}{2}\)=(\(\frac{n\left(2n+2\right)+2n+2}{2}\)=\(\frac{2nn+2n+2n+2}{2}\)=\(\frac{2\left(nn+n+n+1\right)}{2}\)=nn+2n+1