Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh được ∆ABD = ∆ACD (c.g.c)
=> Các tam giác vuông ABD,ACD có chung cạnh huyền AD
=> B,C cùng thuộc đường tròn đường kính AD
b, Ta có HC= 4cm
Tính được AC = 2 5 cm
Xét tam giác ACD vuông tại C có đường cao HC
A C 2 = A H . A D
Từ đó tính được AD=10cm
a, Ta có:
A
C
D
^
=
90
0
=> C thuộc đường tròn đường kính AD
Chứng minh: A B D ^ = 90 0 => B thuộc đường tròn đường kính AD => B,C cùng thuộc đường tròn đường kính AD
b, Tính được AD=10cm
A B C H D E I F K
1/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{3^2+4^2}=5cm\)
\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8cm\)
Xét tg vuông AHB có
\(HA=\sqrt{AB^2-HB^2}\) (Pitago)
\(\Rightarrow HA=\sqrt{3^2-1,8^2}=2,4cm\)
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\)
2/
Xét tg vuông AHC và tg vuông DHC có
HC chung
HA=HD (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi dây cung)
=> tg AQHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông tương ứng bằng nhau) => AC=DC
Xét tg ABC và tg DBC có
AC=DC (cmt)
BC chung
BA=BD (bán kính (B))
=> tg ABC = tg DBC (c.c.c) \(\Rightarrow\widehat{BAC}=\widehat{BDC}=90^o\)
=> A và D cùng nhìn BC dưới hai góc bằng nhau \(=90^o\) => A và D cùng nằm trên đường tròn đường kính BC hay A; B; C; D cùng nằm trên 1 đường tròn
3/
\(\widehat{EAD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow DA\perp EF\) (1)
\(BF\perp DE\) (gt) (2)
Từ (1) và (2) => I là trực tâm của tg DEF
\(\Rightarrow EK\perp DF\) (trong tg 3 đường cao đồng quy tại 1 điểm)
Gọi K' là giao của DF với (B) \(\Rightarrow\widehat{EK'F}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow EK'\perp DF\)
Như vậy từ E có 2 đường thẳng cùng vuông góc với DF => vô lý (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => K trùng K' => K thuộc đường tròn (B)
Xét tg ABK có
BA=BK (bán kính (B)) => tg ABK cân tại B \(\Rightarrow\widehat{BAK}=\widehat{BKA}\) (góc ở đáy tg cân)
a) Gọi O là trung điểm của AD
mà AD là đường kính
nên O là tâm của đường tròn đường kính AD
hay OA=OD=R
Ta có: ΔACD vuông tại C(AC⊥CD)
mà CO là đường trung tuyến ứng với cạnh huyền AD(O là trung điểm của AD)
nên \(CO=\dfrac{AD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(OA=OD=\dfrac{AD}{2}\)(O là trung điểm của AD)
nên OC=OA=OD(1)
Ta có: ΔABC cân tại A(gt)
mà AH là đường cao ứng với cạnh đáy BC(gt)
nên AH là đường phân giác ứng với cạnh BC(Định lí tam giác cân)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
hay \(\widehat{BAD}=\widehat{CAD}\)
Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(cmt)
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
⇒\(\widehat{ABD}=\widehat{ACD}\)(hai góc tương ứng)
mà \(\widehat{ACD}=90^0\)(AC⊥CD)
nên \(\widehat{ABD}=90^0\)
hay AB⊥BD
Ta có: ΔABD vuông tại B(AB⊥BD)
mà BO là đường trung tuyến ứng với cạnh huyền AD(O là trung điểm của AD)
nên \(BO=\dfrac{AD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AO=OD=\dfrac{AD}{2}\)(O là trung điểm của AD)
nên OB=OD=OA(2)
Từ (1) và (2) suy ra OB=OC=R
⇒B,C cùng thuộc đường tròn(O)
hay B,C cùng thuộc đường tròn đường kính AD(đpcm)