Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\), \(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)
+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)
\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)
+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)
+) \(x+1\ne0\Leftrightarrow x\ne-1\)
+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)
\(\Leftrightarrow x\ne0;x\ne-2\)
+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)
Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)
a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)
\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)
\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)
b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)
Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-2 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -4 | -1 | 0 | 1 | 3 | 4 | 5 | 8 |
Vậy ............................
Đăng từng bài thôi nha bạn
Bài 1 : Năm nay mới lên lớp 8 -_-
Bài 2 :
\(a)\)
* Câu A :
\(A=x^2+4x-7\)
\(A=\left(x^2+4x+4\right)-11\)
\(A=\left(x+2\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé )
Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)
* Câu B :
\(B=2x^2-3x+5\)
\(2B=4x^2-6x+10\)
\(2B=\left(4x^2-6x+1\right)+9\)
\(2B=\left(2x-1\right)^2+9\ge9\)
\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)
* Câu C :
\(C=x^4-3x^2+1\)
\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)
\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)
Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)
Chúc bạn học tốt ~
1)M=3x(2x-5y)+(3x-y)(-2x)-1/2(2-26xy)
=-1
2)
a)7x(x-2)-5(x-1)=21x^2-14x^2+3
<=>7x2-19x+5=7x2+3
<=>-19x=-2
<=>x=\(\frac{2}{19}\)
Giải tiêu biểu câu a nhé.
a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)
\(\Leftrightarrow19x+5=0\)
\(\Leftrightarrow x=-\frac{5}{19}\)