K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

Bài 2:

a) ĐKXĐ: \(x\ge1\)

\(pt\Leftrightarrow x^2-4x+5=x^2-2x+1\)

\(\Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)

b) ĐKXĐ: \(x\le\dfrac{16}{5}\)

\(pt\Leftrightarrow-5x+16=24\Leftrightarrow5x=-8\Leftrightarrow x=-\dfrac{8}{5}\left(tm\right)\)

c) ĐKXĐ: \(x\ge0\)

\(pt\Leftrightarrow5x=2+x\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

d) \(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=8\)

\(\Leftrightarrow\left|x-2\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\)

26 tháng 9 2021

\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(1-\dfrac{1}{\sqrt{x}}\right)\left(đk:x>0,x\ne1\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{4}{\sqrt{x}+1}\)

3 tháng 9 2021

ĐK: \(x\ge0\)

TH1: \(m\le0\Rightarrow\) phương trình vô nghiệm.

TH2: \(m>0\)

\(pt\Leftrightarrow\sqrt{x}+2=\dfrac{6}{m}\)

\(\Leftrightarrow\sqrt{x}=\dfrac{6-2m}{m}\)

Phương trình có nghiệm khi: \(\dfrac{6-2m}{m}\ge0\Leftrightarrow6-2m\ge0\Leftrightarrow m\le3\).

\(\Rightarrow0< m\le3\)

Mà \(m\in Z\Rightarrow m\in\left\{1;2;3\right\}\).

3 tháng 9 2021

\(P=\dfrac{6}{\sqrt{x}+2}\left(đk:x\ge0\right)=m\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow x\in\left\{0;1;16\right\}\)

\(\Rightarrow m\in\left\{1;2;3\right\}\)

a: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

25 tháng 10 2021

Bài 1:

a: ĐKXĐ: \(x\ge0\)

b: \(B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\)

\(=4-2\sqrt{3}+24\sqrt{2}+24-2\sqrt{6}-2\sqrt{3}\)

\(=28-2\sqrt{6}+24\sqrt{2}-4\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 6 2021

Bài 4:

Gọi giá niêm yết 1 chiếc tủ lạnh là $a$ (đồng)

Theo bài ra ta có:

$(2.7500000+a)(1-0,08)=27140000$

$\Rightarrow a=14500000$ (đồng)

 

AH
Akai Haruma
Giáo viên
16 tháng 6 2021

Bài 5:

Theo bài ra thì $r_1=h=6$ (cm)

$r_2=4$ (cm)

Thể tích phần còn lại:

$\pi r_1^2h-\pi r_2^2h=\pi h(r_1^2-r_2^2)$

$=\pi .6(6^2-4^2)=120\pi$ (cm2)

NV
26 tháng 6 2021

Ta có:

\(\left(\dfrac{a^3}{b^3+c^3}+\dfrac{b^3}{c^3+a^3}+\dfrac{c^3}{a^3+b^3}\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(\sqrt[3]{\dfrac{a^3}{b^3+c^3}}+\sqrt[3]{\dfrac{b^3}{c^3+a^3}}+\sqrt[3]{\dfrac{c^3}{a^3+b^3}}\right)^3\)

\(\Leftrightarrow\sqrt[3]{\dfrac{a^3}{b^3+c^3}}+\sqrt[3]{\dfrac{b^3}{c^3+a^3}}+\sqrt[3]{\dfrac{c^3}{a^3+b^3}}\le\sqrt[3]{9\left(\dfrac{a^3}{b^3+c^3}+\dfrac{b^3}{c^3+a^3}+\dfrac{c^3}{a^3+b^3}\right)}\)

\(< \sqrt[3]{9\left(\dfrac{2a^3}{a^3+b^3+c^3}+\dfrac{2b^3}{a^3+b^3+c^3}+\dfrac{2c^3}{a^3+b^3+c^3}\right)}=\sqrt[3]{18}< \sqrt[3]{32}=2\sqrt[3]{4}\)

NV
1 tháng 8 2021

\(T=\left(\dfrac{x}{2}+\dfrac{y}{2}-\dfrac{x\sqrt{y}+y\sqrt{x}}{x+y}+\dfrac{3}{4}\right)\left(4040+\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(T\ge\left(\dfrac{x}{2}+\dfrac{y}{2}-\dfrac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}+\dfrac{3}{4}\right)\left(4040+\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(T\ge\left(\dfrac{x}{2}+\dfrac{y}{2}-\dfrac{\sqrt{x}}{2}-\dfrac{\sqrt{y}}{2}+\dfrac{3}{4}\right)\left(4040+2\sqrt{\dfrac{xy}{xy}}\right)\)

\(T\ge\left[\dfrac{1}{2}\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\left(\sqrt{y}-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\right].4042\)

\(T\ge\dfrac{4042}{2}=2021\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)

NV
29 tháng 7 2021

\(\Leftrightarrow\dfrac{a+b+c}{a}\left[\dfrac{\left(a+b+c\right)^2-4b\left(a+c\right)}{b\left(a+c\right)}\right]\ge\dfrac{c\left(4a+4c-5b\right)}{b\left(a+c\right)}\)

\(\Leftrightarrow\left(a+b+c\right)\left(a-b+c\right)^2\ge ac\left[4\left(a+c\right)-5b\right]\)

- Nếu \(4\left(a+c\right)\le5b\) BĐT hiển nhiên đúng

- Nếu \(4\left(a+c\right)>5b\)

Do \(ac\le\dfrac{1}{4}\left(a+c\right)^2\) nên ta chỉ cần chứng minh:

\(\left(a+b+c\right)\left(a+c-b\right)^2\ge\dfrac{1}{4}\left(a+c\right)^2\left[4\left(a+c\right)-5b\right]\)

Đặt \(\left\{{}\begin{matrix}a+c=x>0\\b=y>0\end{matrix}\right.\)

\(\Rightarrow4\left(x+y\right)\left(x-y\right)^2\ge x^2\left(4x-5y\right)\)

\(\Leftrightarrow x^2y-4xy^2+4y^3\ge0\)

\(\Leftrightarrow y\left(x-2y\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=2y\) hay \(a=b=c\)

11 tháng 6 2021

3a) \(\Delta'=\left(m-1\right)^2-m^2+3m-2=m-1\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Rightarrow m>1\)

b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m+2\end{matrix}\right.\)

Theo đề: \(x_1^2+x_2^2=3x_1x_2\Rightarrow\left(x_1+x_2\right)^2=5x_1x_2\)

\(\Rightarrow4\left(m-1\right)^2=5m^2-15m+10\Rightarrow m^2-7m+6=0\)

\(\Rightarrow\left(m-1\right)\left(m-6\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=6\end{matrix}\right.\) mà \(m>1\Rightarrow m=6\)