K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

Chỉ cách bấm máy tính ấy vì bài này giải bằng máy tính 

18 tháng 10 2021

tìm trên gg đi

 

NV
22 tháng 7 2021

1.

Xét pt đầu:

\(x^2-xy+x-y=0\)

\(\Leftrightarrow x\left(x-y\right)+x-y=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-y\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=y\end{matrix}\right.\)

TH1: \(x=-1\) thay xuống pt dươi:

\(\sqrt{y^2+15}=-3-2+\sqrt{9}\Leftrightarrow\sqrt{y^2+15}=-2< 0\) (vô nghiệm)

TH2: thay \(y=x\) xuống pt dưới:

\(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\) (1)

\(\Rightarrow3x-2=\sqrt{x^2+15}-\sqrt{x^2+8}=\dfrac{7}{\sqrt{x^2+15}+\sqrt{x^2+8}}>0\)

\(\Rightarrow x>\dfrac{2}{3}\)

Do đó (1) tương đương:

\(3x-2+\sqrt{x^2+8}-\sqrt{x^2+15}=0\)

\(\Leftrightarrow3x-3+\sqrt{x^2+8}-3+4-\sqrt{x^2+15}=0\)

\(\Leftrightarrow3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}=0\)

\(\Leftrightarrow\left(x-1\right)\left[3+\left(x+1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{x^2+15}+4}\right)\right]=0\)

\(\Leftrightarrow x-1=0\) (do \(x+1>0\) nên ngoặc phía sau luôn dương)

\(\Leftrightarrow x=y=1\)

NV
22 tháng 7 2021

2.

Pt đầu tương đương:

\(y^2-x+x^2-2xy+x=0\)

\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow y=x\)

Thay xuống pt dưới:

\(2x^2+x-x^2+x-3=0\)

\(\Leftrightarrow x^2+2x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=-3\end{matrix}\right.\)

3) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-6\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-6\right)\)

\(=4m^2-8m+4-4m^2+24\)

\(=-8m+28\)

Để phương trình có hai nghiệm phân biệt x1;x2 thì Δ>0

\(\Leftrightarrow-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{1}=2m-2\\x_1x_2=m^2-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-6\right)-16=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+12-16=0\)

\(\Leftrightarrow2m^2-8m=0\)

\(\Leftrightarrow2m\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=4\left(loại\right)\end{matrix}\right.\)

cj có thi violympic hả

10 tháng 4 2022

Câu 1 Đề sai bạn 

VD a = 5 ; b = 4 

=> a2 - ab + b = 52 - 5.4 + 4 = 9 \(⋮\)

nhưng a ; b \(⋮̸\)3

câu 4: 

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

b: Xét ΔBAC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=6.5\left(cm\right)\)

loading...  loading...  loading...  loading...  loading...  

22 tháng 12 2021

C A B E D H K

Gọi DH là khoảng cách thấp nhất từ máy bay đến mặt đất, khi đó AC có độ dài lớn nhất là 2,2m. Dựng hình chữ nhật DHEK => DH = EK

Do BA = BE = BC = 1,5m cố định nên tam giác ACE vuông tại A

Xét tam giác ACE vuông tại A có cos\(\widehat{ECA}\) = \(\dfrac{CA}{CE}=\dfrac{2,2}{3}\) => \(\widehat{ECA}\) \(\approx\) 42o50'

BA = BC => tam giác ABC cân tại B => \(\widehat{BAC}=\widehat{BCA}\) = \(\widehat{ECA}\) \(\approx\) 42o50'

=> \(\widehat{DBK}\) = \(\widehat{BAC}+\widehat{BCA}\) = 2.\(\widehat{BCA}\) = 85o40'

Xét tam giác DBK vuông tại D có: BK = BD. cos\(\widehat{DBK}\) 

                                                            = 4.cos85o40' \(\approx\) 0,3022

=> DH = KE \(\approx\) 1,5 - 0,3022 \(\approx\)1,2 (m)

22 tháng 12 2021

undefined