Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xet tam giac BOD va tam giac AOE có;
BO/AO=EO/DO
18/36=9/18
BOD=AOE(ĐĐ)
vay tam giac BOA đồng dạngvs tam giac AOE(cgc)
do tam giac BOA đồng dạngvs tam giac AOE suy ra EAO=DBO
b)xet tam giac ADC và tam giac BEC
EAO=DBO(cmt)
góc C chung
suy ra tam giac ADC đồng dạng tam giac BEC(gg)
tam giác BAK và tam giác BAO có chung đường cao kẻ từ B xuống cạnh đối diện
=>\(\dfrac{OA}{AK}=\dfrac{SAOB}{SBKA}=\dfrac{SAOC}{SCAK}\)
sư dụng dãy tỉ số bằng nhau ta có \(\dfrac{OA}{AK}=\dfrac{SAOB+SAOC}{SBKA+SCAK}=\dfrac{SAOB+SAOC}{SABC}\)
cmtt với \(\dfrac{OB}{BE}\)và\(\dfrac{OC}{CF}\)ta có \(\dfrac{OB}{BE}\)=\(\dfrac{SBAO+SOBC}{SABC}\),\(\dfrac{OC}{CF}\)=\(\dfrac{SOAC+SBAO}{SABC}\)
=>\(\dfrac{OA}{AK}+\dfrac{OB}{BE}+\dfrac{OC}{CF}=\dfrac{2\left(SOAB+SOAC+SOBC\right)}{SABC}=\dfrac{2SABC}{SABC}=2\)
=>ĐPCM
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
b: MF/MB=HF/HB
NE/NC=HE/HC
Xét ΔHFE và ΔHBC có
góc HFE=góc HBC
góc FHE=góc BHC
=>ΔHFE đồng dạng với ΔHBC
=>HF/HB=HE/HC
=>MF/MB=NE/NC
a: Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBEC vuông tại E
hay BE\(\perp\)AC
Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
hay CD\(\perp\)AB
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó: ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc 1 đường tròn