K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-6\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-6\right)\)

\(=4m^2-8m+4-4m^2+24\)

\(=-8m+28\)

Để phương trình có hai nghiệm phân biệt x1;x2 thì Δ>0

\(\Leftrightarrow-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{1}=2m-2\\x_1x_2=m^2-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-6\right)-16=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+12-16=0\)

\(\Leftrightarrow2m^2-8m=0\)

\(\Leftrightarrow2m\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=4\left(loại\right)\end{matrix}\right.\)

NV
22 tháng 7 2021

1.

Xét pt đầu:

\(x^2-xy+x-y=0\)

\(\Leftrightarrow x\left(x-y\right)+x-y=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-y\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=y\end{matrix}\right.\)

TH1: \(x=-1\) thay xuống pt dươi:

\(\sqrt{y^2+15}=-3-2+\sqrt{9}\Leftrightarrow\sqrt{y^2+15}=-2< 0\) (vô nghiệm)

TH2: thay \(y=x\) xuống pt dưới:

\(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\) (1)

\(\Rightarrow3x-2=\sqrt{x^2+15}-\sqrt{x^2+8}=\dfrac{7}{\sqrt{x^2+15}+\sqrt{x^2+8}}>0\)

\(\Rightarrow x>\dfrac{2}{3}\)

Do đó (1) tương đương:

\(3x-2+\sqrt{x^2+8}-\sqrt{x^2+15}=0\)

\(\Leftrightarrow3x-3+\sqrt{x^2+8}-3+4-\sqrt{x^2+15}=0\)

\(\Leftrightarrow3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}=0\)

\(\Leftrightarrow\left(x-1\right)\left[3+\left(x+1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{x^2+15}+4}\right)\right]=0\)

\(\Leftrightarrow x-1=0\) (do \(x+1>0\) nên ngoặc phía sau luôn dương)

\(\Leftrightarrow x=y=1\)

NV
22 tháng 7 2021

2.

Pt đầu tương đương:

\(y^2-x+x^2-2xy+x=0\)

\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow y=x\)

Thay xuống pt dưới:

\(2x^2+x-x^2+x-3=0\)

\(\Leftrightarrow x^2+2x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=-3\end{matrix}\right.\)

18 tháng 10 2021

Chỉ cách bấm máy tính ấy vì bài này giải bằng máy tính 

18 tháng 10 2021

tìm trên gg đi

 

cj có thi violympic hả

10 tháng 4 2022

Câu 1 Đề sai bạn 

VD a = 5 ; b = 4 

=> a2 - ab + b = 52 - 5.4 + 4 = 9 \(⋮\)

nhưng a ; b \(⋮̸\)3

NV
27 tháng 7 2021

2.1

ĐKXĐ: \(x\ge-\dfrac{1}{16}\)

\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\) (1)

Do \(x\ge-\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}\dfrac{32}{\sqrt{16x+1}+9}< \dfrac{32}{9}\\x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}>\dfrac{32}{9}\end{matrix}\right.\)

\(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\)

Nên (1) tương đương:

\(x-5=0\)

\(\Leftrightarrow x=5\)

Câu 2.2, 2.3 đề lỗi không dịch được

NV
25 tháng 7 2021

1.2

Đề câu này bị lỗi đoạn cuối, chỗ nằm giữa \(-3x+...+2014\) là gì ấy nhỉ? \(2^2\) đúng không?

Đây là giải theo cách dịch đề bài:

\(A=5x^5-15x^4+14x^3-12x^2-3x+2^2+2014\)

Khi đó:

\(x=\sqrt[3]{2}+1\Rightarrow x-1=\sqrt[3]{2}\)

\(\Rightarrow\left(x-1\right)^3=2\)

\(\Rightarrow x^3-3x^2+3x-1=2\)

\(\Rightarrow x^3-3x^2+3x-3=0\)

Ta có:

\(A=5x^2\left(x^3-3x^2+3x-3\right)-x^3+3x^2-3x+4+2014\)

\(=5x^2.0-\left(x^3-3x^2+3x-3\right)+2015\)

\(=-0+2015=2015\)

Còn nếu đề bài là:

\(A=\left(5x^5-15x^4+14x^3-12x^2-3x+2\right)^2+2014\)

Thì kết quả là: \(A=1+2014=2015\)

NV
25 tháng 7 2021

2.3

Lại 1 câu đề lỗi nữa, biểu thức của pt là:

\(x^2+\left(2m-2\right)x-m^2=0\)

hay \(x^2+2m-2x-m^2=0\)?

Người đánh đề bài này rất ẩu tả, vô trách nhiệm

Coi như đề bài là: \(x^2+\left(2m-2\right)x-m^2=0\)

Ta có:

\(\Delta'=\left(m-1\right)^2+m^2=\dfrac{1}{2}\left(2m-1\right)^2+\dfrac{1}{2}>0\) ; \(\forall m\)

Pt luôn có 2 nghiệm với mọi m

Khi đó theo hệ thức Viet:  \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\Leftrightarrow\left(x_1-x_2\right)^2=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=36\)

\(\Leftrightarrow\left(2m-2\right)^2+4m^2=36\)

\(\Leftrightarrow m^2-m-4=0\Rightarrow m=\dfrac{1\pm\sqrt{17}}{2}\)

20 tháng 4 2022

Dạ em cám ơn thầy giáo đã nhiệt tình giúp đỡ ạ!

13 tháng 2 2022

-Sao bạn đăng bài lớp 8 rồi đăng bài lớp 9 vậy?

NV
16 tháng 4 2022

\(\Rightarrow\left(n+3\right)\left(n^3+2n^2+1\right)\) cũng là SCP

\(\Rightarrow4\left(n^4+5n^3+6n^2+n+3\right)\) là SCP

\(\Rightarrow4n^4+20n^3+24n^2+4n+12=k^2\)

Ta có:

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n-1\right)^2+3n^2+14n+11>\left(2n^2+5n-1\right)^2\)

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2-\left(n-1\right)\left(5n+11\right)\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left(2n^2+5n-1\right)^2< k^2\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n\right)^2\\4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n^2-4n-12=0\\\left(n-1\right)\left(5n+11\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=6\end{matrix}\right.\)

Thay lại kiểm tra thấy đều thỏa mãn

17 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!