K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

Gọi (O) là đường tròn ngoại tiếp đa giác, do đa giác có số đỉnh là số chẳn nên đường nối một đỉnh tùy ý với tâm O sẽ đi qua một đỉnh khác (ta gọi là 2 điểm xuyên tâm đối) 
do đa giác có n đỉnh nên có \(\frac{n}{2}\) cặp điểm xuyên tâm đối (hay có \(\frac{n}{2}\) đường chéo đi qua tâm O) 
với mỗi hai đường chéo qua tâm O ta được 1 hình chữ nhật   
vì có 12 hình chữ nhật và có \(\frac{n}{2}\) đường chéo nên : \(C_{\frac{n}{2}}^2=15\left(dk:n\ge4\right)\)\(\Leftrightarrow\frac{\left(\frac{n}{2}\right)!}{2!.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right).\left(\frac{n}{2}-2\right)!}{2.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right)}{2}=15\Leftrightarrow\frac{n}{2}.\left(\frac{n}{2}-1\right)=30\Leftrightarrow n^2-2n=120\Leftrightarrow\left[\begin{array}{nghiempt}n=12\\n=-10\left(loai\right)\end{array}\right.\)

Vậy \(n=12\) thỏa mãn

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

Để ý rằng với mỗi hcn tạo ra sẽ có 2 đường chéo đi qua tâm O.

Cứ 2 cặp đường chéo như vậy sẽ tương ứng với một hình chữ nhật. Mà có $10$ đường chéo đi qua tâm nên có số hình chữ nhật được tạo thành là:

$C^2_10=45$

Số hình chữ nhật là 45

13 tháng 3 2018

Số tam giác có các đỉnh là 3 trong 2n điểm A1;A2;…;A2n  là: 

Ta thấy ứng với hai đường chéo đi qua tâm O của đa giác A1A2…A2n cho tương ứng một hình chữ nhật có 4 đỉnh là 4 điểm trong 2n điểm A1;A2;…;A2n và ngược lại mỗi hình chữ nhật như vậy sẽ cho tương ứng hai đường chéo đi qua tâm O của đa giác.

Mà số đường chéo đi qua tâm của đa giác là n nên số hình chữ nhật có đỉnh là 4 trong 2n điểm bằng 

Theo giả thiết:

n=8.

Chọn C

3 tháng 11 2019

Đáp án B

Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật  ⇒   C n 2   =   45   ⇔ n   =   10

7 tháng 5 2018

Đáp án C

Chọn ngẫu nhiên 4 đỉnh của đa giác có  C 20 4 = 4845   c á c h

Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đường tròn ngoại tiếp đa giác

Cứ 2 đường chéo bất kì là 2 đường chéo cuiả 1 hình chữ nhật

Do đó số hình chứ nhật là  C 20 2 = 45

Vậy xác suất cần tìm là

P = 45 4845 = 3 323

14 tháng 2 2017

Đáp án A.

Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều

Một hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên

Số cách chọn 4 đỉnh của đa giác là C 20 4

Số cách chọn 4 đỉnh của hình chữ nhật là  C 20 2

Vậy xác suất cần tính là  P = C 10 2 C 20 4 = 3 323

4 tháng 6 2017

Đáp án A

Ta có số cách chọn 4 đỉnh:  

Hình hai mươi cạnh đều có 10 đường chéo đi qua tâm và chúng đều bằng nhau

Cứ hai đường chéo gộp lại ta được hai đường chéo của một hình chữ nhật

Vậy có tất cả   hình chữ nhật thỏa mãn 4 đỉnh là 4 trong 20 đỉnh của hình cho

Kết luận: 

15 tháng 3 2019

Đáp án A 

 

Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều. Một hình chữ nhật có 4 đỉnh là đỉnh của một đa giác được tạo bởi 2 đường kính nói trên. Số cach chọn 4 đỉnh của đa giác là: .

Xác suất cần tìm là:

11 tháng 1 2019

22 tháng 9 2018