K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Số tam giác có các đỉnh là 3 trong 2n điểm A1;A2;…;A2n  là: 

Ta thấy ứng với hai đường chéo đi qua tâm O của đa giác A1A2…A2n cho tương ứng một hình chữ nhật có 4 đỉnh là 4 điểm trong 2n điểm A1;A2;…;A2n và ngược lại mỗi hình chữ nhật như vậy sẽ cho tương ứng hai đường chéo đi qua tâm O của đa giác.

Mà số đường chéo đi qua tâm của đa giác là n nên số hình chữ nhật có đỉnh là 4 trong 2n điểm bằng 

Theo giả thiết:

n=8.

Chọn C

24 tháng 12 2017

24 tháng 4 2016

Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).

Theo bài ta có phương trình :

\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)

\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)

\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)

\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)

\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))

\(\Leftrightarrow n=18\)

Vậy đa giác đều có 16 cạnh, (thập lục giác đều)

28 tháng 12 2019

Chọn B

· Bổ đề: Trong mặt phẳng cho hai tia Ox và Oy vuông góc với nhau tại gốc O. Trên tia Ox lấy 10 điểm  A 1 ,   A 2 ,   . . . ,   A 10  và trên tia Oy lấy 10 điểm  B 1 ,   B 2 ,   . . . . ,   B 10   thỏa mãn  O A 1   =   A 1 A 2   =   . . . =   A 9 A 10   =   O B 1   =   B 1 B 2   =   . . . . =   B 9 B 10   =   1 (đvd).

Tìm số tam giác có 2 đỉnh nằm trong 10 điểm đỉnh nằm trong 10 điểm  B 1 ,   B 2 ,   . . . . ,   B 10  sao cho tam giác chọn được có đường tròn ngoại tiếp, tiếp xúc với một trong hai trục Ox hoặc Oy?

Giải: Gọi   là 3 đỉnh của tam giác thỏa yêu cầu bài toán với 

Ta có 

Do đường tròn luôn cắt Ox tại   phân biệt nên đường tròn chỉ có thể tiếp xúc với Oy tại  B p  ta có phương tích 

Do nên dễ thấy 

hay nói cách khác bộ ba (m,n,p)

Vậy có 4 tam giác thỏa mãn yêu cầu bổ đề.

· Bài toán: Không gian mẫu 

Gọi A là biến cố chọn được tam giác có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy. Theo bổ đề ta chọn được 4 tam giác có 2 đỉnh thuộc tia Ox, 1 đỉnh thuộc tia Oy; tương tự có 4 tam giác có 1 đỉnh thuộc tia Oy,  đỉnh thuộc tia . Suy ra, n(A) = 8

Xác suất biến cố A là 

27 tháng 12 2019

27 tháng 7 2017

9 tháng 5 2017

NV
14 tháng 4 2020

Số tam giác: \(C_{2n}^3=\frac{\left(2n\right)!}{\left(2n-3\right)!.6}=\frac{n\left(2n-1\right)\left(2n-2\right)}{3}\)

Cứ hai đường chéo qua tâm của đa giác đều sẽ đóng vai trò hai đường chéo của hình chữ nhật

Đa giác có \(n\) đường chéo qua tâm \(\Rightarrow C_n^2=\frac{n\left(n-1\right)}{2}\) hình chữ nhật

Ta có pt:

\(\frac{n\left(2n-1\right)\left(2n-2\right)}{3}=10n\left(n-1\right)\)

\(\Leftrightarrow n\left(n-1\right)\left(n-8\right)=0\Rightarrow n=8\)

2 tháng 10 2019