K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có: \(x^2-4x+5=\left(x^2-2.x.2+2^2\right)+1\)

                                      \(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right);1\ge0\)

Vậy \(x^2-4x+5\ge0\left(\forall x\right)\)

28 tháng 10 2019

\(P=x^2-4x+2x-8+9,5=x^2-2x+1-9+9,5=\)

\(=\left(x-1\right)^2+0,5>0\forall x\)

9 tháng 9 2021

\(1,x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ 2,-2x^2-x-1=-2\left(x^2+2\cdot\dfrac{1}{4}x+\dfrac{1}{16}+\dfrac{7}{16}\right)\\ =-2\left(x+\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\\ 3,\dfrac{1}{2}x^2-2x+2=\dfrac{1}{2}\left(x^2-4x+4\right)=\dfrac{1}{2}\left(x-2\right)^2\ge0\)

9 tháng 9 2021

ối, ghê vậy

24 tháng 3 2017

A= x2+y2-4x+2y+7

= (x2-4x+4)+(y2+2y+1)+2

= (x-2)2+(y+1)2+2

Ta thấy: (x-2)2\(\ge0\)

(y+1)2\(\ge0\)

\(\Rightarrow\)(x-2)2+(y+1)2+2\(\ge2\)

\(\Rightarrow\)A\(\ge2\)

Vậy A>0 \(\forall x,y\)

24 tháng 3 2017

\(A=x^2+y^2-4x+2y+7\)

\(=x^2+y^2-4x+2y+4+1+2\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+2\)

\(=\left(x-2\right)^2+\left(y+1\right)^2+2\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+2\ge2>0\forall x,y\)

25 tháng 8 2020

( x - 2 )( x - 4 ) + 3

<=> x2 - 6x + 8 + 3

<=> ( x2 - 6x + 9 ) + 2

<=> ( x - 3 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

15 tháng 12 2019

\(4x^2-4x+3\)

\(=\left(4x^2-4x+1\right)+2\)

\(=\left(2x+1\right)^2+2>0\)với mọi x

vậy \(4x^2-4x+3>0\)với mọi x

15 tháng 12 2019

\(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\)

Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow4x^2-4x+3\ge2\forall x\)

hay \(4x^2-4x+3>0\forall x\)

23 tháng 6 2021

a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)

<=> \(x^2-4x\ge-4>-5\)

b) \(2x^2+4y^2-4x-4xy+5\)

\(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)

\(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)

5 tháng 11 2021

\(x^2-4x+9y^2+6y+10\\ =\left(x^2-4x+4\right)+\left(9y^2+6y+1\right)+5\\ =\left(x-2\right)^2+\left(3y+1\right)^2+5\ge5>0\)

5 tháng 11 2021

Thank bạn!

 

11 tháng 8 2017

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

\(=\left(x-y\right)^2+1\)

vì \(\left(x-y\right)^2\ge0\Rightarrow\left(x-y\right)^2+1>0\forall x,y\)

vậy ................