K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

\(a,\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{5}{12}\Leftrightarrow AC=\dfrac{5}{12}\cdot6=2,5\left(cm\right)\\ b,BC=\sqrt{AC^2+AB^2}=\sqrt{2,5^2+6^2}=6,5\left(cm\right)\left(pytago\right)\)

9 tháng 10 2021

a) Xét tam giác ABC vuông tại A:

\(AC=tan\alpha.AB=\dfrac{5}{12}.6=2,5\left(cm\right)\)

b) Áp dụng đ/lý Pytago trong tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{2,5^2+6^2}=6,5\left(cm\right)\)

27 tháng 9 2016

a, theo đề ta có : \(\frac{AC}{AB}\) = \(\frac{5}{12}\)

                          => AC= 6.5:12=2,5

b, ta có: BC= \(\sqrt{AC^2+AB^2}\) = \(\frac{13}{2}\)

16 tháng 8 2017

AC= 2.5    BC= 5.5

12 tháng 11 2018

31 tháng 12 2019

28 tháng 10 2023

loading...  loading...  loading...  

6 tháng 10 2023

Bài 1:

a) Ta có:

\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)

\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)  

b) Áp dụng Py-ta-go ta có: 

\(BC^2=AB^2+AC^2=6^2+15^2=261\)

\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)

6 tháng 10 2023

Bài 2: 

\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

1 tháng 6 2021

Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Vì AD là phân giác \(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}CD\)

Ta có: \(BD+CD=BC\Rightarrow\dfrac{3}{4}CD+CD=10\Rightarrow\dfrac{7}{4}CD=10\Rightarrow CD=\dfrac{40}{7}\)

\(\Rightarrow BD=\dfrac{3}{4}.\dfrac{40}{7}=\dfrac{30}{7}\)

16 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=4,8cm

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{ACB}\simeq36^052'\)

b: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\widehat{AFE}=\widehat{ABC}\)