K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}+47^0=90^0\)

=>\(\widehat{C}=43^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{10}{sin43}\simeq14,66\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq10,72\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot CB}=\dfrac{BH}{CH}\)

Xét ΔHAB vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BD=\dfrac{BH^2}{AB}\)

Xét ΔHAC vuông tại H có HE là đường cao

nên \(CE\cdot CA=CH^2\)

=>\(CE=\dfrac{CH^2}{AC}\)

\(\dfrac{BD}{EC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\left(\dfrac{AB^2}{AC^2}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^3}{AC^3}\)

16 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=4,8cm

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{ACB}\simeq36^052'\)

b: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\widehat{AFE}=\widehat{ABC}\)

13 tháng 11 2021

a: AH=12cm

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.Bài 3:...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7 2024

Gì nhiều vậy???

 

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

a:

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>\(BC^2=25+64=89\)

=>\(BC=\sqrt{89}\)

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{8}{5}\)

=>\(\widehat{B}\simeq58^0\)

=>\(\widehat{C}=32^0\)

b: Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2; BM*BA=BH^2; AM*MB=HM^2

ΔAHC vuông tại H có HN làđường cao

nên AN*AC=AH^2;CN*CA=CH^2; NA*NC=NH^2

AM*MB+NA*NC

=HM^2+HN^2

=MN^2

c: AB^2/AC^2

\(=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB^2=3,6*10=36

=>AB=6cm

Xét ΔABC vuông tại A có

sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: ΔABM vuông tại A có AK là đường cao

nên BK*BM=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BK*BM=BH*BC

=>BK/BC=BH/BM

=>ΔBKH đồng dạng với ΔBCM

 

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB^2=3,6*10=36

=>AB=6cm

Xét ΔABC vuông tại A có

sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: ΔABM vuông tại A có AK là đường cao

nên BK*BM=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BK*BM=BH*BC

=>BK/BC=BH/BM

=>ΔBKH đồng dạng với ΔBCM