K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHFA~ΔHDC

=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)

=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)

c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)

nên \(\widehat{FEH}=\widehat{DEH}\)

=>EH là phân giác của góc FED

Xét ΔFED có

EH,FH là các đường phân giác

Do đó: H là giao điểm của ba đường phân giác trong ΔFED

a: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét tứ giác BFHD có

góc BFH+goc BDH=180 độ

=>BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có

góc CEH+góc CDH=180 độ

=>CEHD là tứ giác nội tiếp

góc FDH=góc FBH

góc EDH=góc ACF

mà góc FBH=góc ACF

nên góc FDH=góc EDH

=>DH là phân giác của góc FDE(1)

góc EFH=góc CAD

góc DFH=góc EBC

mà góc CAD=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF

c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có

góc HBD chung

=>ΔBHD đồg dạng với ΔBCE

=>BH/BC=BD/BE

=>BH*BE=BC*BD

Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có

góc FCB chung

=>ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2

25 tháng 4 2021

Xét ΔHDB VÀ ΔHEA, có:

\(\widehat{BHD}\) = \(\widehat{EHA}\)( đối đỉnh)

\(\widehat{BDH}\) = \(\widehat{HEA}\) = 90°( giả thiết )

Do đó ΔHDB ∞ ΔHEA

➜ \(\dfrac {HD}{HE}\) = \(\dfrac{HB}{HA}\) ➜ HA . HD = HB . HE

9 tháng 4 2017

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔFHB\(\sim\)ΔEHC

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BE\cdot BH\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CD\cdot CB=CH\cdot CF\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

11 tháng 4 2020

*OLM đang lỗi nên không vẽ được hình, bạn vào thống kê mình để xem hình nhé! Mình vẽ ở GeoGebra*

\(\hept{\begin{cases}S_{BHC}=\frac{1}{2}\cdot BC\cdot HD\\S_{ABC}=\frac{1}{2}\cdot BC\cdot AD\end{cases}}\Rightarrow\frac{HD}{AD}=\frac{S_{BHC}}{S_{ABC}}\)

Tương tự cũng có: \(\hept{\begin{cases}\frac{HE}{BE}=\frac{S_{AHC}}{S_{ABC}}\\\frac{HF}{CF}=\frac{S_{AHB}}{S_{ABC}}\end{cases}}\)

\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

b) Xét \(\Delta BHD\) và  \(\Delta BCE\)có:

\(\widehat{B}\)chung

\(\widehat{BDH}=\widehat{BEC}=90^o\)

=> \(\Delta BHD\)đồng dạng với \(\Delta\)BEC (g.g)

=> \(\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH\cdot BE=BC\cdot BD\left(1\right)\)

Cmtt: \(\Delta CHD\)đồng dạng \(\Delta CBF\)(g.g)

=> \(\frac{CH}{CB}=\frac{CD}{CF}\Rightarrow CH\cdot CF=CB\cdot CD\left(2\right)\)

Từ (1) (2) => \(CH\cdot CF+BH\cdot BE=BC\cdot BD+CD\cdot CB=BC^2\)

c) \(\widehat{HDC}=\widehat{HEC}=90^o\)

=> Tứ giác HDCE nội tiếp

=> \(\widehat{HED}=\widehat{HCD}\)(3)

 \(\widehat{AFH\:}=\widehat{AEH}=90^o\)

=> AFHE nội tiếp

=> \(\widehat{FEH}=\widehat{FAH}\left(4\right)\)

Mà \(\widehat{FAH}=\widehat{HCD}\) (cùng phụ \(\widehat{ABC}\)) (5)

(3)(4)(5)=> \(\widehat{FEH}=\widehat{HED}\)

=> EH là phân giác \(\widehat{FED}\)

Cmtt cũng được: DH là phân giác \(\widehat{FDE}\)và FH là phân giác \(\widehat{DFE}\)

=> H là tâm đường tròn nội tiếp tam giác EFD

=> H cách đều EF; FD; ED

d) Gọi O là giao của phân giác \(\widehat{BHC}\)và trung trực của CH. Theo gt thì điểm O cố đnhj

Ta có: OH=OC => \(\Delta\)HOC cân tại O => \(\widehat{CHO}=\widehat{HCO}\)

Mà \(\widehat{BHO}=\widehat{CHO}\)nên \(\widehat{MHO}=\widehat{NCO}\)

=> \(\Delta OMH=\Delta ONC\left(cgc\right)\)

=> OM=ON

=> O thuộc đường trung trực của MN, hay đường trung trực của MN luôn đi qua 1 điểm cố định

12 tháng 4 2020

@qu y nh Bạn có thể làm ý c theo cách khác giúp mk đc không ạ!!! Mk chưa học tứ giác nội tiếp(Nội dung lớp 9)

a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng với ΔADC

Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

b: ΔAEH đồng dạng với ΔADC

=>AE/AD=AH/AC

=>AE*AC=AD*AH

ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AH*AD=AE*AC

c: BH*BE+CH*CF

=BD*BC+CD*BC

=BC^2