K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng với ΔADC

Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

b: ΔAEH đồng dạng với ΔADC

=>AE/AD=AH/AC

=>AE*AC=AD*AH

ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AH*AD=AE*AC

c: BH*BE+CH*CF

=BD*BC+CD*BC

=BC^2

26 tháng 3 2023

a) xét tam giác ABD và tam giác AHF có 

góc BAD chung

Góc AFH = góc ADB (=90 độ)

=> tam giác ABD đồng dạng vs tam giác AHF (g.g)

=> AB/AD = AH/AF

=> AF.AD = AH.AD

b) xét tam giác AFC và tam giác AEB có

Góc A chung

Góc AFC = góc AEB (=90 độ)

=> tam giác AFC đồng vs tam giác AEB (g.g)

=> AF/AC = AE/AB

=> AF.AB= AE.AC

a: Xét ΔABD vuông tại  D và ΔAHF vuông tại F có

góc FAH chung

=>ΔABD đồng dạng với ΔAHF

=>AB/AH=AD/AF

=>AB*AF=AH*AD

b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

c:góc FEC=góc DAC

góc DFC=góc EBC

mà góc DAC=góc EBC

nên góc FEC=goc DFC

=>FC là phân giác của góc EFD

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)

Ta có: \(AE\cdot AC=AB\cdot AF\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

28 tháng 4 2017

A B C F E H

a) Xét \(\Delta ABE\)và \(\Delta ACF\)có:

\(\widehat{AEB}=\widehat{AFC}\left(=90\right);\widehat{A}\)chung

\(\Rightarrow\Delta ABE~\Delta ACF\left(g-g\right)\)

b)Theo câu a \(\Rightarrow\frac{AB}{AC}=\frac{AE}{AF}\Rightarrow AF.AB=AE.AC\)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

a: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét tứ giác BFHD có

góc BFH+goc BDH=180 độ

=>BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có

góc CEH+góc CDH=180 độ

=>CEHD là tứ giác nội tiếp

góc FDH=góc FBH

góc EDH=góc ACF

mà góc FBH=góc ACF

nên góc FDH=góc EDH

=>DH là phân giác của góc FDE(1)

góc EFH=góc CAD

góc DFH=góc EBC

mà góc CAD=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF

c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có

góc HBD chung

=>ΔBHD đồg dạng với ΔBCE

=>BH/BC=BD/BE

=>BH*BE=BC*BD

Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có

góc FCB chung

=>ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2