K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMBD có 

I là trung điểm của AB

I là trug điểm của MD

Do đó: AMBD là hình bình hành

b: Ta có: AMBD là hình bình hành

nên AD=BM

mà BM=CM

nên AD=CM

c: Để AMBD là hình chữ nhật thì AM⊥BD

Xét ΔABC có

AM là đường trung tuyến

AM là đường cao

Do đó:ΔABC cân tại A

hay AB=AC

13 tháng 11 2021

a: Xét tứ giác OAMB có 

D là trung điểm của AB

D là trung điểm của OM

Do đó: OAMB là hình bình hành

16 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành

\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)

Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)

Do đó AHCK là hình bình hành

Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao

Do đó \(AH\bot HC\)

Vậy AHCK là hình chữ nhật

\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK

Vậy H,M,K thẳng hàng

\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M

Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)

Do đó \(HK//AB\)

Mà \(HK\bot AC\) nên \(AC\bot AB\)

Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông

13 tháng 12 2021

Ai đó giải giúp mik vs!!!