Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác AOBM có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành suy ra :
BM // OA, BM = OA (1)
Chứng minh tương tự ta có :
NC // OA, NC = OA (2)
Từ (1) và (2) suy ra BM // NC, BM = NC
Vậy MNCB là hình bình hành
* Xét tứ giác AOBM, ta có:
DA = DB (gt)
DO = DM (định nghĩa đối xứng tâm)
Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ BM // AO và BM = AO (1)
* Xét tứ giác AOCN, ta có: EA = EC (gt)
EO = EN (định nghĩa đối xứng tâm)
Suy ra: Tứ giác AOCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ CN // AO và CN = AO (2)
Từ (1) và (2) suy ra:BM // CN và BM = CN.
Vậy tứ giác BMNC là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau).
D là trung điểm của AB
E là trung điểm của AC
=> DE là đường trung bình của tam giác ABC
=> DE // BC (1)
DE = BC/2 (2)
D là trung điểm của OM (M đối xứng với O qua D)
E là trung điểm của ON (N đối xứng với O qua E)
=> DE là đường trung bình của tam giác OMN
=> DE // MN (3)
DE = MN/2 (4)
Từ (1) và (3)
=> MN // BC (5)
Từ (2) và (4)
=> MN = BC (6)
Từ (5) và (6)
=> MNCB là hình bình hành
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hình thang
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MNCB là hình thang
b: Xét tứ giác MNCD có
MN//CD
MN=CD
Do đó: MNCD là hình bình hành
c: Xét tứ giác ADCE có
N là trung điểm của AC
N là trung điểm của DE
Do đó:ADCE là hình bình hành
a: Xét tứ giác OAMB có
D là trung điểm của AB
D là trung điểm của OM
Do đó: OAMB là hình bình hành