Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi giao điểm của AB và DM là K
Ta có: D đối xứng M qua AB
=>AB là đường trung trực của MD
=>AB\(\perp\)MD tại K và K là trung điểm của MD
Ta có: MK\(\perp\)AB
AC\(\perp\)AB
Do đó: MK//AC
Xét ΔABC có
M là trung điểm của BC
MK//AC
Do đó: K là trung điểm của AB
Xét tứ giác AMBD có
K là trung điểm chung của AB và MD
=>AMBD là hình bình hành
Hình bình hành AMBD có AB\(\perp\)MD
nên AMBD là hình thoi
b: Xét ΔABC có
M,K lần lượt là trung điểm của BC,BA
=>MK là đường trung bình của ΔABC
=>MK//AC và \(MK=\dfrac{AC}{2}\)
Ta có: \(MK=\dfrac{AC}{2}\)
\(MK=\dfrac{MD}{2}\)
Do đó: AC=MD
mà AC=AE
nên MD=AE
Xét tứ giác AMDE có
DM//AE
DM=AE
Do đó: AMDE là hình bình hành
=>DE//AM
Ta có: DE//AM
BD//AM
DE,BD có điểm chung là D
Do đó: D,B,E thẳng hàng
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a/ Tứ giác ABCD có:
- AM=MD (gt)
- MB=MC (gt)
=> Tứ giác ABCD là hình bình hành
Do △ABC là tam giác cân suy ra AM vừa là trung tuyến vừa là đường cao hay AM⊥BC
=> ABCD là hình thoi (đpcm)
b/ Hình thoi ABCD (cmt) có AC//BD => CF//BD => AF//BD (1)
Mặt khác ta có: AD⊥BC ; BF⊥BC => AD//BF (2)
AF và BD cùng cắt AD và BF (3)
Từ (1), (2), (3):
Vậy tứ giác ADBF là hình bình hành (đpcm)
a) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng với nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)