K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MBPA có 

N là trung điểm của MP

N là trung điểm của BA

Do đó: MBPA là hình bình hành

6 tháng 1 2022

a) Xét tứ giác AEBM:

+ D là trung điểm của AB (gt).

+ D là trung điểm của ME (M là điểm đối xứng với E qua D).

\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).

\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).

Mà BE = EC (E là trung điểm của BC).

\(\Rightarrow\) AM = EC.

Xét tứ giác ACEM:

+ AM = EC (cmt).

+ AM // EC (AM // BE).

\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).

b) Xét tam giác ABC cân tại A:

AE là đường trung tuyến (E là trung điểm của BC).

\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).

Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).

\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).

c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).

\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).

\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)

6 tháng 1 2022

a,

xét tam giác ABC có đường t/b DE:

=>DE//AC và DE=\(\dfrac{1}{2}\) AC

M là điểm đối xứng của DE:

=>DE+DM=AC

từ trên suy ra:

EM=AC và EM//AC

vậy ACEM là hình bình hành.

b, 

Xét tam giác ABC là tam giác cân :

=>AB=AC

mà AC = ME

nên: AB =ME (1)

lại có: AM=MB , MD=DE(2)

từ (1) và (2) suy ra:

AEBM là hình chữ nhật.

c,

Xét tam giác ABC có BE=EC suy ra:

BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)

vì AEBM là hình chữ nhật nên:

góc AEB = 90\(^o\)<=> AEB là tam giác vuông

vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)

 

 

16 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành

\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)

Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)

Do đó AHCK là hình bình hành

Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao

Do đó \(AH\bot HC\)

Vậy AHCK là hình chữ nhật

\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK

Vậy H,M,K thẳng hàng

\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M

Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)

Do đó \(HK//AB\)

Mà \(HK\bot AC\) nên \(AC\bot AB\)

Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông

cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.

a) Chứng minh : Tứ giác MNCB là hình thang cân.

b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?

c) Chứng minh : N là trọng tâm của tam giác CMD.

d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.       

a: Xét tứ giác AECM có

N là trung điểm chung của AC và EM

nên AECM là hình bình hành

c: Để AECM là hình vuông thì góc CAM=45 độ và CM=MA

=>ΔBAC vuông cân tại C