K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Ở bên trên, mình viết nhầm, đề bài là:

Cho P(x)=x^99-100x98+100x97-100x^96+...+100x-1. Tính P(99)

Mong mọi người giúp đỡ

26 tháng 3 2020

Câu hỏi của Jin Tiyeon - Toán lớp 7 - Học toán với OnlineMath

Em click chuột  vào link trên.

22 tháng 8 2019

\(p\left(x\right)=x^{99}-100x^{98}+100x^{97}-....+100x-1\)

Ta có: \(x=99\Rightarrow x+1=100\)

\(\Rightarrow p\left(99\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-...+\left(x+1\right)x-1\)

\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-...+x^2+x-1\)

\(=x-1\)

\(=99-1\)

\(=98\)

p(x)=x^99-100x^98+100x^97-...+100x-1

vì x=99=>x+1=100=>p(99)=x^99-(x+1)x^98+(x+1)x^97-...+(x+1)x-1

=x^99-x^99-x^98+x^98+x^97-...+x^2+x-1

=x-1

=99-1

=98

2 tháng 7 2018

\(P\left(x\right)=\left(x^{99}-99x^{98}\right)-\left(x^{98}-99x^{97}\right)+\left(x^{97}-99x^{96}\right)-...-\left(x^2-99x\right)+x-1\)

             \(=\left(x-99\right)\left(x^{98}-x^{97}+x^{96}-...+x^2-x\right)+x-1\)

\(P\left(99\right)=\left(99-99\right)\left(99^{98}-99^{97}+99^{96}-...+99^2-99\right)+99-1=98\)

Ta có : x = 99 

=> 100 = x + 1 

Ta có : P(99) = x99 - (x + 1)x98 + (x + 1)x97 - (x + 1)x96 + ..... + (x + 1)x  - 1

                     = x99 - x99 - x98 + x98 + x97 - x97 - x96 + .... + x2 + x - 1 

                     = x - 1 

                    = 99 - 1 = 98 

2 tháng 7 2019

\(P\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x-1\)

\(\Leftrightarrow P\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x-1\)

\(\Leftrightarrow P\left(x\right)=x^{99}-99x^{98}-x^{98}+99x^{97}+x^{97}-...+99x+x-1\)

\(\Leftrightarrow P\left(x\right)=x^{98}\left(x-99\right)-x^{97}\left(x-99\right)+...+\left(x-1\right)\)

\(\Leftrightarrow P\left(x\right)=x^{98}\left(x-99\right)-x^{97}\left(x-99\right)+...+\left(99-1\right)\)

\(\Leftrightarrow P\left(99\right)=x^{98}\left(99-99\right)-x^{97}\left(99-99\right)+...+98\)

\(\Leftrightarrow P\left(99\right)=x^{98}.0-x^{97}.0+...+98\)

\(\Leftrightarrow P\left(99\right)=98\)

Tham khảo:

Câu hỏi của Bích Ngọc - Toán lớp 7 | Học trực tuyến

Học tốt

2 tháng 6 2018

Ta có 100=99+1 hay x+1

Thay x+1 vào P(99) .Ta có :\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-..................+\left(x+1\right)x-1\)=\(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-.............+x^2+x-1\) =\(\left(x^{99}-x^{99}\right)-\left(x^{98}-x^{98}\right)+\left(x^{97}-x^{97}\right)-.........+\left(x^2-x^2\right)+x-1^{ }\)

=x-1=99-1=98

14 tháng 3 2019

\(P\left(x\right)=x^{99}-100x^{98}+100x^{97}-...+100x-1\)

\(P\left(99\right)=99^{99}-100\cdot99^{98}+100\cdot99^{97}-...+100\cdot99-1\)

\(P\left(99\right)=99^{99}-\left(99+1\right)\cdot99^{98}+\left(99+1\right)\cdot99^{97}-...+\left(99+1\right)\cdot99-1\)

\(P(99)= 99^{99}-99^{99}-99^{98}+99^{98}+99^{97}-99^{97}-99^{96}+...+99^2+99-1\)

\(P\left(99\right)=99-1=98\)

29 tháng 7 2016

bài 1 

A(x)=\(x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x+1\)

      = \(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-\left(99+1\right)x^{96}+...+\left(99+1\right)x-1\)

thay 99=x ta được:

A(x)=\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...+\left(x+1\right)x-1\)

      = \(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...+x^2+x-1\)

      =x-1

thay x=99 vào đa thức A(x) ta được :

A(99)=99-1

         =98

vậy tại x=99 thì giá trị của A(x)=98

bài 2:

tại x=1 thay vào đa thức P(x) ta được :

P(1)=\(100.1^{100}+99.1^{99}+...+2.1^2+1\)

       = 100+99+...+2+1

       =5050

vậy tại x=1 thì giá trị của P(x)=5050

31 tháng 7 2016

sao lại thay x=99-2 lần thế

3 tháng 8 2016

A(x) = x99 - 100x98 + 100x97 - 100x96 + ... + 100x+1

= x99 - ( 99+1) x98-( 99+1) x97- ( 99+1) x96+...+ ( 99+1) x+1

Thay 99=x ta được:

A(x) = x99 - ( x+1) x98 + (x+1) x97 - ( x+1) x96 +...+ ( x+1)

       = x99 - x99 - x98 + x98 - x97 + x97 - x96 +...+ x2 +x -1

       = x-1

Thay x=99 vào đa thức A(x) ta được :

A(99) = 99-1

          = 98

Vậy tại x= 99 thì giá trị của A(x) = 98

3 tháng 8 2016

\(A\left(x\right)=x^{99}-100x^{98}+....+100x-1\)

\(=x^{99}-99x^{99}+99x^{98}-99x^{97}+...+99x+x-1\)

\(=x^{98}\left(x-99\right)-x^{97}\left(x-99\right)+x^{96}\left(x-99\right)+..+x\left(x-99\right)-x-1\) 

thay \(A\left(x\right)=99\)  ta có: 

\(A\left(99\right)=99^{98}\left(99-99\right)-99^{97}\left(99-99\right)+...+99\left(99-99\right)-99-1\)

\(=99^{98}.0-99^{97}.0+99^{96}.0-...+99.0-99-1\)

\(=0-0+0-...-0+99-1\)

\(=99-1\)

\(=98\)

8 tháng 8 2019

các bạn ơi đây là đề sai đúng ko ?

8 tháng 8 2019

Nếu tính ra thì vẫn đc

\(P\left(x\right)=x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}+...+\left(99+1\right)x-1\)

\(P\left(x\right)=x^{99}-99x^{99}-99x^{98}+99x^{98}-99x^{97}+...+99x+x-1\)

\(P\left(x\right)=x^{98}\left(x-99\right)+x^{97}\left(x-99\right)-x^{96}\left(x-99\right)+...+x\left(x-99\right)-1\)

\(P\left(x\right)=\left(x^{98}+x^{97}-x^{96}+x^{95}-...-x^2+x\right)\left(x-99\right)-1\)

Vẫn đau đầu @@ chắc đề sai thật