Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
\(\Delta=a^2+8>0\Rightarrow\) pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=-2\end{matrix}\right.\)
\(N=x_1^2+x_2^2+x_1x_2+2\left(x_1+x_2\right)+4\)
\(=\left(x_1+x_2\right)^2-x_1x_2+2\left(x_1+x_2\right)+4\)
\(=a^2+2+2a+4\)
\(N=a^2+2a+6=\left(a+1\right)^2+5\ge5\)
\(N_{min}=5\) khi \(a=-1\)
a: Δ=(2m-1)^2-4*(-m)
=4m^2-4m+1+4m=4m^2+1>0
=>Phương trình luôn có nghiệm
b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(2m-1\right)^2-3\left(-m\right)\)
=4m^2-4m+1+3m
=4m^2-m+1
=4(m^2-1/4m+1/4)
=4(m^2-2*m*1/8+1/64+15/64)
=4(m-1/8)^2+15/16>=15/16
Dấu = xảy ra khi m=1/8
\(ac=-2< 0\Rightarrow\) phương trình đã cho luôn có 2 nghiệm (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2\end{matrix}\right.\)
\(x_1^2+x_2^2=12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)
\(\Leftrightarrow4m^2+4=12\)
\(\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)
a*c<0
=>Phương trình luôn có hai nghiệm
x1^2+x2^2=12
=>(x1+x2)^2-2x1x2=12
=>(2m)^2-2*(-2)=12
=>4m^2+4=12
=>m^2+1=3
=>m^2=2
=>\(m=\pm\sqrt{2}\)
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)
\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)
Δ=(m+1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24
=>Phương trình luôn có hai nghiệm pb
x1^2+x2^2+(x1-2)(x2-2)=11
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2-7=0
=>m^2-2m-8=0
=>(m-4)(m+2)=0
=>m=4 hoặc m=-2
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
\(\Delta'=m^2+2m+6=\left(m+1\right)^2+5>0\) ;\(\forall m\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-2m-6\end{matrix}\right.\)
Đặt \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(P=\left(-2m\right)^2-2\left(-2m-6\right)=4m^2+4m+12\)
\(P=\left(2m+1\right)^2+11\ge11\)
\(P_{min}=11\) khi \(m=-\dfrac{1}{2}\)