Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) Xét tam giác vuông BHC và tam giác vuôn BFE có: ^B chung
=> Tam giác BHC ~ Tam giác BFE
=> \(\frac{BH}{BF}=\frac{BC}{BE}\)
=.> \(\frac{BH}{BC}=\frac{BF}{BE}\)
Xét tam giác BHF và tam giác BCE có:
góc B chung
\(\frac{BH}{BC}=\frac{BF}{BE}\)( chứng minh trên)
=> Tam giác BHF ~ tam giác BCE
4.
Vì \(\frac{BH}{BC}=\frac{BF}{BE}\)=> \(BC.BF=BH.BE=CD^2=4^2=16\)
=> \(BF=16:BC=16:3=\frac{16}{3}\)(cm)
=> \(S_{BFE}=\frac{1}{2}.BF.EF=\frac{16}{3}.4=\frac{64}{3}\)(cm^2)
Tam giác BFE Vuông tại F. Áp dụng định lí Pitago
=> \(BE^2=BF^2+EF^2=\left(\frac{16}{3}\right)^2+4^2=\frac{400}{9}\Rightarrow BE=\frac{20}{3}\)(cm)
Theo câu a đã tính được \(BH=\frac{12}{5}\)(cm)
Xét tam giác BEF và Tam giác BHF có chung đường cao hạ từ F
=> Có tỉ số \(\frac{S_{BHF}}{S_{BEF}}=\frac{BH}{BE}=\frac{\frac{12}{5}}{\frac{20}{3}}=\frac{9}{25}\)
=> \(S_{BHF}=\frac{9}{25}.S_{BEF}=\frac{9}{25}.\frac{64}{3}=\frac{192}{25}\)(cm^2)
a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)
b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)
=>HF=2HE
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:
\(BA^2=AE\cdot AC\)
\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)
nên \(\widehat{C}\simeq36^052'\)
b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có
\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)
Do đó: ΔMAB\(\sim\)ΔABE(g-g)
a: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC^2=4^2+3^2=25\)
=>AC=5(cm)
Xét ΔBAC vuông tại B có BH là đường cao
nên \(BH\cdot AC=BA\cdot BC\)
=>BH*5=3*4=12
=>BH=2,4(cm)
Xét ΔBAC vuông tại B có
\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)
=>\(\widehat{BAC}\simeq37^0\)
b: Xét ΔABE vuông tại A có AH là đường cao
nên \(BH\cdot BE=BA^2\)(1)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)
c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có
\(\widehat{HBC}\) chung
Do đó: ΔBHC\(\sim\)ΔBFE
=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)
=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)
Xét ΔBHF và ΔBCE có
BH/BC=BF/BE
\(\widehat{HBF}\) chung
Do đó: ΔBHF\(\sim\)ΔBCE