Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)
Do đó: ΔAHB\(\sim\)ΔBCD(g-g)
b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)
Ta có: ΔAHB\(\sim\)ΔBCD(cmt)
nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)
hay \(AH\cdot ED=HB\cdot EB\)(đpcm)
1: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó:ΔAHB\(\sim\)ΔBCD
2: Ta có: ΔAHB\(\sim\)ΔBCD
nên \(\dfrac{BC}{AH}=\dfrac{CD}{HB}\)
hay BC/CD=AH/HB
mà BC/CD=EB/ED
nên EB/ED=AH/HB
hay \(EB\cdot HB=AH\cdot ED\)
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH = góc BDC(hai góc so le trong, AB//DC)
góc BCD = góc AHB(hai góc vuông)
Do đó: ΔAHB∼ΔBCD(g-g)
b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{EB}{ED}\)=\(\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)
Ta có: ΔAHB∼∼ΔBCD(cmt)
nên\(\dfrac{AH}{BC}\)=\(\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay\(\dfrac{AH}{BH}\)=\(\dfrac{BC}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AH}{BH}\)=\(\dfrac{EB}{ED}\)
hay AH⋅ED=HB⋅EB(đpcm)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: ED/EB=AD/AB
mà AD/AB=HB/AH
nên ED/EB=HB/AH
=>ED*AH=EB*HB
Hình vẽ bị lỗi. Bạn thông cảm!
a) Xét \(\Delta\)KBA và \(\Delta\)CDB có:
^BKA = ^DCB = 90 độ
^KBA = ^CDB ( so le trong )
=> \(\Delta\)KBA ~ \(\Delta\)CDB (g-g)
b) Xét \(\Delta\)ADB có:
\(S\left(ADB\right)=\frac{1}{2}AD.AB=\frac{1}{2}AK.BD\)(1)
mà AB = 8cm ; AD = BC = 6cm ( ABCD là hình chữ nhật) ; BD = \(\sqrt{AD^2+AB^2}=\sqrt{6^2+8^2}=10\)(cm)
(1) => AD.AB = AK.BD => AK = 6.8 : 10 = 4,8 ( cm)
\(S\left(KBA\right)=\frac{1}{2}AK.KB\)
với KA = 4,8 cm và KB = \(\sqrt{AB^2-AK^2}=\sqrt{8^2-4,8^2}=6,4\)(cm)
=> \(S\left(KBA\right)=\frac{1}{2}AK.KB=\frac{1}{2}4,8.6,4=15,36\)(cm^2)
c) Áp dụng tính chất phân giác ta có:
\(\frac{BA}{BD}=\frac{FA}{FD};\frac{BK}{BA}=\frac{EK}{EA}\)(1)
Xét \(\Delta\)BAK và \(\Delta\)BDA có: ^BKA = ^BAD = 90 độ và ^B chung
=> \(\Delta\)BAK ~ \(\Delta\)BDA ( g-g)
-> \(\frac{BA}{BD}=\frac{BK}{BA}\)(2)
Từ (1); (2) => \(\frac{FA}{FD}=\frac{EK}{EA}\)=> EA.FA= EK.FD
a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔDAB(g-g)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
=>ΔHAD đồng dạng với ΔABD
b: ΔHAD đồng dạng vơi ΔABD
=>DH/DA=DA/DB
=>DA^2=DH*DB