Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔASC có
O,M lần lượt là trung điểm của AC,AS
=>OM là đường trung bình
=>OM//SC
Xét ΔSAB có
M,N lần lượt là trung điểm của SA,SB
=>MN là đường trungbình của ΔSAB
=>MN//AB
=>MN//CD
MN//CD
\(CD\subset\left(SCD\right)\)
\(MN\) không thuộc mp(SCD)
Do đó: MN//(SCD)
OM//SC
\(SC\subset\left(SCD\right)\)
OM không thuộc mp(SCD)
Do đó: OM//(SCD)
OM//(SCD)
MN//(SCD)
\(OM,MN\subset\left(OMN\right)\)
Do đó: (OMN)//(SCD)
b: MN//AB
\(AB\subset\left(ABCD\right)\)
MN không thuộc mp(ABCD)
Do đó: MN//(ABCD)
a: Xét ΔASC có
O,E lần lượt là trung điểm của AC,AS
=>OE là đường trung bình của ΔASC
=>OE//SC
OE//SC
\(SC\subset\left(SCD\right)\)
OE không nằm trong mp(SCD)
Do đó: OE//(SCD)
b: Xét ΔBSD có
O,F lần lượt là trung điểm của BD,BS
=>OF là đường trung bình của ΔBSD
=>OF//SD
OF//SD
SD\(\subset\left(SCD\right)\)
OF không nằm trong (SCD)
Do đó: OF//(SCD)
c: OF//(SCD)
OE//(SCD)
OF,OE cùng thuộc mp(OEF)
Do đó: (OEF)//(SCD)
a: ABCD là hình chữ nhật tâm O
=>O là trung điểm chung của AC và BD
Xét ΔASC có
O,E lần lượt là trung điểm của AC,AS
=>OE là đường trung bình
=>OE//SC
mà SC\(\subset\left(SCD\right)\) và OE không thuộc (SCD)
nên OE//(SCD)
b: Xét ΔBSD có
\(\dfrac{BO}{BD}=\dfrac{BF}{BS}=\dfrac{1}{2}\)
nên OF//SD
=>OF//(SDC)
c: OE//(SDC)
OF//(SDC)
\(OE,OF\subset\left(OEF\right)\)
Do đó: (OEF)//(SCD)
a/
Xét tg SAD có
SM=DM; SN=AN => MN là đường trung bình của tg SAD
=> MN//AD
Mà AD//BC (cạnh đối hbh)
=> MN//BC mà \(BC\in\left(SBC\right)\) => MN//(SBC)
C/m tương tự ta cũng có NP//(SCD)
b/
Ta có
NP//(SCD) (cmt) (1)
Xét tg SBD có
SP=BP (gt)
OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> PO là đường trung bình của tg SBD
=> PO//SD mà \(SD\in\left(SCD\right)\) => PO//(SCD) (2)
Từ (1) và (2) => (ONP)//(SCD)
C/m tương tự ta cũng có (OMN)//(SBC)
c/
Trong (ABCD) , qua O dựng đường thẳng // AD cắt AB và CD lần lượt tại H và K Ta có
MN//AD (cmt)
=> KH//MN
\(O\in\left(OMN\right);O\in KH\)
\(\Rightarrow KH\in\left(OMN\right)\) mà \(H\in AB;K\in CD\)
=>K; H là giao của (OMN) với CD và AB
d/
Ta có
KH//AD
AB//CD => AH//DK
=> AHKD là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AD=HK
Ta có
MN là đường trung bình của tg SAD (cmt)
\(\Rightarrow MN=\dfrac{AD}{2}\) mà AD=HK (cmt)
\(\Rightarrow MN=\dfrac{HK}{2}\Rightarrow\dfrac{MN}{HK}=\dfrac{1}{2}\)
a: Xét ΔSAD có
M,N lần lượt là trung điểm của SA,SD
=>MN là đường trung bình của ΔSAD
=>MN//AD
Ta có: MN//AD
AD\(\subset\)(ABCD)
MN không nằm trong mp(ABCD)
Do đó: MN//(ABCD)
b: Xét ΔDSB có
O,N lần lượt là trung điểm của DB,DS
=>ON là đường trung bình của ΔDSB
=>ON//SB và \(ON=\dfrac{SB}{2}\)
Ta có: ON//SB
ON\(\subset\)(OMN)
SB không thuộc mp(OMN)
Do đó: SB//(OMN)
c: Xét ΔASC có
O,M lần lượt là trung điểm của AC,AS
=>OM là đường trung bình của ΔASC
=>OM//SC
Ta có: OM//SC
OM\(\subset\)(OMN)
SC không nằm trong mp(OMN)
Do đó: SC//(OMN)
Ta có: SB//(OMN)
SC//(OMN)
SB,SC cùng thuộc mp(SBC)
Do đó: (SBC)//(OMN)
Để chứng minh a. ON//(SAB) và b. (OMN)//(SCD), chúng ta có thể sử dụng các định lý và quy tắc trong hình học không gian.
a. Để chứng minh ON//(SAB), ta có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Theo định lý này, nếu có hai đường thẳng cắt một mặt phẳng và các đường thẳng này đều song song với một đường thẳng thứ ba trong mặt phẳng đó, thì hai đường thẳng đó cũng song song với nhau. Áp dụng định lý này, ta có thể chứng minh ON//(SAB) bằng cách chứng minh rằng ON và AB đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.
b. Để chứng minh (OMN)//(SCD), ta cũng có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Tương tự như trường hợp trước, ta cần chứng minh rằng OM và CD đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.
Tuy nhiên, để chứng minh chính xác các phần a và b, cần có thêm thông tin về các góc và độ dài trong hình chóp S.ABCD.