K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

Đáp án là B

Cách 1. Xác định và tính góc giữa hai đường thẳng.

 Tam giác ABC vuông tại A

Do SA=SB=SC nên nếu gọi H là hình chiếu vuông góc của S lên (ABC) thì H là tâm đường tròn ngoại tiếp tam giác ABC mà tam giác ABC vuông tại A  nên H là trung điểm của  BC.

Dựng hình bình hành  ABCD. Khi đó:(AB,SC)=(CD,SC) và CD=AB=a. Tam giác SBC vuông tại S

có SH là đường trùng tuyến nên SH= a 2 2

Tam giác CDH có 

theo định lý Cô- Sin ta có

Tam giác SHD vuông tại H nên

Tam giác SCD có:

Cách 2. (Hay phù hợp với bài này) Ứng dụng tích vô hướng.

Theo giả thiết có

Ta có 

Suy ra: 

12 tháng 8 2019

Chọn B.

Cách 1. Xác định và tính góc giữa hai đường thẳng

ABC vuông tại A 

Do SA = SB = SC nên nếu gọi H là hình chiếu vuông góc của S lên (ABC) thì H là tâm đường trong ngoại tiếp tam giác ABC mà ABC vuông tại A nên H là trung điểm của BC. Dựng hình bình hành ABCD. Khi đó (AB;SC) = (CD;SC) và CD = AB = a   

∆ SBC vuông tại S (vì  có SH là đường trung tuyến nên SH =  a 2 2

theo định lí Cô – Sin ta có

SHD vuông tại H nên

 

∆ SCD có 

Cách 2. (Hay phù hợp với bài này) Ứng dụng tích vô hướng

Đặt  Theo giả thiết ta có: 

Ta có: 

Xét 

Suy ra: 

27 tháng 2 2017

Chọn D.

10 tháng 8 2017

24 tháng 9 2023

Vì `SA=SC; SB=SD`

  Mà `O` là trung điểm `AC;BD`

  `=>SO \bot AC; SO \bot BD`

  `=>SO \bot (ABCD)`

Vì `OC \bot BD; OC \bot SO =>OC \bot (SBD)`

   `=>(SC,(SBD))=\hat{OSC}=30^o`

Ta có: `OC=1/2 AC=\sqrt{2}/2 a`

   `=>SO=[OC]/[tan \hat{OSC}]=\sqrt{6}/2 a`

`=>V_[S.ABCD]=1/3 . \sqrt{6}/2 a .a^2 = \sqrt{6}/6 a^3`.

29 tháng 10 2019

22 tháng 1 2017

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

8 tháng 3 2019

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

a)

+ Gọi H là hình chiếu của S trên (ABC)

⇒ AH là hình chiếu của SA trên (ABC)

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Gọi E là trung điểm BC

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

H là tâm của Δ đều ABC.

30 tháng 9 2018

Chọn B.

Dễ thấy AB ⊥ BC. Suy ra SB  ⊥  BC,  ∆ SMN đồng dạng với ∆ SCB, do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12