Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Số hạng thứ 100 của tổng là:
(100-1) * 3 + 5 = 302
b) Tổng 100 số hạng đầu tiên là:
(302 + 5) * 100 : 2 = 15350
Đ/S: a) 302
b) 15350
Câu 2:
a) Số hạng thừ 50 của tổng là:
(50 - 1) * 5 + 7 =252
b) Tổng 50 số hạng đầu là:
(252 + 7) * 50 : 2 =6475
Đ/S: a) 252
b) 6475
s=5+8+11+14+..
nhận xét :5+3=8
8+3=11
11+3=14
...............
vậy => dãy số trên là dãy số cách đều 3 đv
giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:
(x-5):3+1=100
(x-5):3=100-1
(x-5):3=99
x-5=99x3
x-5=297
x=297+5
x=302
vậy số hạng đứng thứ 100 của dãy là: 302
b) ta có dãy :5+8+11+14+..
(302+5) x100:2=15350
cậu giải tương tự như trên nhá
công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1
---------------------------------tính tổng:(sc+sđ)x số số hạng :2
a) \(P=\left\{1;6;11;16;21;26;31;36;41;46;...\right\}\)
b) Số hạng thứ 100 của dãy số P :
\(\left(100-1\right).5+1=496\)
c) \(A=1+6+11+...+496\)
\(\Rightarrow A=\left[\left(496-1\right):5+1\right]\left(1+496\right):2\)
\(\Rightarrow A=100.497:2\)
\(\Rightarrow A=24850\)
Ta có: \(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{x}\)
\(=\dfrac{1}{1.2};\dfrac{1}{2.3};\dfrac{1}{3.4};\dfrac{1}{4.5};...;\dfrac{1}{n\left(n+1\right)}\)
=> Số hạng thứ 100 và 2022 lần lượt là: \(\dfrac{1}{100.101}=\dfrac{1}{10100};\dfrac{1}{2022.2023}=\dfrac{1}{4090506}\)
Tổng 100 số hạng đầu tiên:
- Ta có: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...\)
\(\Rightarrow=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{100}+\dfrac{1}{100}\right)-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
-Dãy số tổng quát:
\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{n\left(n+1\right)}\)(n thuộc N*)
-Số hạng thứ 100 của dãy: \(\dfrac{1}{100\left(100+1\right)}=\dfrac{1}{10100}\)
-Số hạng thứ 2022 của dãy: \(\dfrac{1}{2022\left(2022+1\right)}=\dfrac{1}{4090506}\)
- Tổng 100 số hạng đầu tiên của dãy:
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{10100}\)=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
=\(1-\dfrac{1}{101}=\dfrac{100}{101}\)
Ta thấy: 1=(1-1).4+1
5=(2-1).4+1
9=(3-1).4+1
13=(4-1).4+1
17=(5-1).4+1
………………
Quy luật: Mỗi số hạng trong dãy bằng số thứ tự của nó trừ 1 rồi nhân với 4 cuối cùng cộng thêm 1.
a) Gọi số n là số hạng thứ a của dãy.
Ta có: n=(a-1).4+1
=>3 số hạng tiếp theo của dãy là:(6-1).4+1=21
(7-1).4+1=25
(8-1).4+1=29
b)Số hạng thứ 2011 của dãy là: (2011-1).4+1=8041
c)Ta có:S=1+5+9+…+8041
=>\(S=\frac{\left(\left(8041-1\right):4+1\right).\left(8041+1\right)}{2}\)
=>\(S=\frac{\left(8040:4+1\right).8042}{2}\)
=>\(S=\left(2010+1\right).\frac{8042}{2}\)
=>\(S=2011.4021\)
=>\(S=8086231\)
a) dạng tổng quát là: 4k + 1
3 số điền vào la 21;25;29
Số thứ 2011 : 4 x 2011 - 4 + 1 = 8041
a) Số hạng thứ 50 = 101
Số hạng thứ 100 = 201
b) Tổng 75 số hạng đầu tiên = 5775
c) 143, 5035 lần lượt ở hạng 71 và 2517
a) Quy luật là: Mỗi số bằng số đứng đầu nhân với số chỉ thứ tự của nó rồi cộng với số chỉ thứ tự của số trước nó.
Số thứ 50 là: 3 . 50 + 49 = 199
Số thứ 100 là: 3 . 100 + 99 = 399
b) Số thứ 75 là:
3 . 75 + 74 = 299
Tổng 75 số hạng đầu là:
(299 + 3) . 75 : 2 = 3825
c) 143 là số thứ:
(143 + 1) : 4 = 36
5035 là số thứ:
(5035 + 1) : 4 = 1259