Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹
⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)
= 2²⁰¹¹ - 2⁰
= 2²⁰¹¹ - 1
= B
Vậy A = B
\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)
\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)
\(\Rightarrow A=2^{2011}-1=B\)
\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)
\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)
\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)
\(A=2^0+2^1+2^2+...+2^{59}\)
\(=2^0\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{57}\left(1+2+2^2\right)\)
\(=2^0.7+2^3.7+...+2^{57}.7\)
\(=7\left(2^0+2^3+...+2^{57}\right)⋮7\)
A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016
=7(1+2^3+...+2^2013)+2^2016
Vì 2^2016 chia 7 dư 1
nên A chia 7 dư 1
mot so chia cho 7 du 3 , chia cho 17 du 12 , chia cho 23 du 7 . hoi so do chia cho 2737 du bao nhieu
Gọi số đã cho là A, theo đề bài ta có :
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặ khác : A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39 = 7.(a + 6) = 17.(b + 3) = 23.(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7, 17 và 23
nhưng 7, 17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39) \(⋮\)7.17.23 hay (A + 39) \(⋮\)2737
=> A + 39 = 2737.k
=> A = 2737.k - 39 = 2737.(k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia : A : 2737