Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)
\(=m^2-2am+a^2+4m^2-4bm+9m^2-6mc+c^2\)
\(=14m^2-2m\left(a+2b+3c\right)+a^2+b^2+c^2\)
\(=14m^2-14m^2+a^2+b^2+c^2\) ( do \(a+2b+3c=7m\) )
\(=a^2+b^2+c^2=VP\)
\(\Rightarrowđpcm\)
Ta có: \(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)
\(=m^2-2ma+a^2+4m^2-4mb+b^2+9m^2-6mc+c^2\)
\(=m^2-2ma+4m^2-4mb+9m^2-6mc+a^2+b^2+c^2\)
\(=m\left(14m-2a-4b-6c\right)+a^2+b^2+c^2\)
\(=-2m\left(-7m+a+2b+6c\right)+a^2+b^2+c^2\)
\(=-2m\left(-7m+7m\right)+a^2+b^2+c^2\)
\(=a^2+b^2+c^2=VP\)
Vậy (m - a)2 + (2m - b)2 + (3m - c)2 = a2 + b2 + c2.
a)m>n công vế vs 2
=> m+2>n+2
b) nhân cả 2 vế m>n cói -2, vì -2 là âm nên dấu bdt đổi chiều: -2m<-2n
c)m>n
=> 2m>2n
=> 2m-5>2n-5
d) m>n
=> -3m<-3n
=>4-3m<4-3n
a) Ta có: m > n => m + 2 > n + 2 (cộng hai vế với 2)
b) Ta có: m > n => -2m < -2n ( nhân hai vế với -2 và đổi chiều BĐT)
c) Ta có: m > n => 2m > 2n => 2m – 5 > 2n – 5
(nhân hai vế với 2, rồi cùng cộng vào hai vế với -5)
d) Ta có m > n => -3m < -3n ⇒ 4 – 3m < 4 – 3n
(nhân hai vế với -3 và đổi chiều BĐT, rồi cùng cộng vào hai vế với 4)
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
k nha
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
\(\left(2m-a\right)^2+\left(2m-b\right)^2+\left(2m-c\right)^2+\left(2m-d\right)^2+\left(2m-e\right)^2\)
\(=4m^2-4ma+a^2+4m^2-4mb+b^2+4m^2-4mc+c^2+4m^2-4md+d^2+4m^2-4me+e^2\)
\(=20m^2-4m\left(a+b+c+d+e\right)+a^2+b^2+c^2+d^2+e^2\)
\(=20m^2-4m.5m+a^2+b^2+c^2+d^2+e^2\)
\(=a^2+b^2+c^2+d^2+e^2\)
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.
Ta có
\(\left(2m-a\right)^2+\left(3m-b\right)^2+\left(3m-c\right)^2=\)
\(=4m^2-4ma+a^2+9m^2-6mb+b^2+9m^2-6mc+c^2=\)
\(=22m^2-2m\left(2a+3b+3c\right)+a^2+b^2+c^2=\)
\(=22m^2-2m.11m+a^2+b^2+c^2=a^2+b^2+c^2\)